Okba , Abderrahim, Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Université Paul Sabatier - Toulouse III, Hervé Aubert, Alexandru Takacs, Équipe MIcro et Nanosystèmes pour les Communications sans fil ( LAAS-MINC ), Laboratoire d'analyse et d'architecture des systèmes [Toulouse] ( LAAS ), Centre National de la Recherche Scientifique ( CNRS ) -Université Toulouse III - Paul Sabatier ( UPS ), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse ( INSA Toulouse ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Institut National Polytechnique [Toulouse] ( INP ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Toulouse III - Paul Sabatier ( UPS ), Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Institut National Polytechnique [Toulouse] ( INP ), Université Toulouse 3 – Paul Sabatier, and H.AUBERT
National audience; The electronic domain has known a significant expansion the last decades, all the advancements made has led to the development of miniature and efficient electronic devices used in many applications such as cyber physical systems. These systems use low-power wireless sensors for: detection, monitoring and so on. The use of wireless sensors has many advantages: • The flexibility of their location, they allow the access to hazardous areas. • The realization of lighter system, less expensive and less cumbersome. • The elimination of all the problems associated to the cables (erosion, impermeability…) • The deployment of sensor arrays. Therefore, these wireless sensors need to be supplied somehow with energy to be able to function properly. The classic ways of supplying energy such as batteries have some drawbacks, they are limited in energy and must be replaced periodically, and this is not conceivable for applications where the wireless sensor is placed in hazardous places or in places where the access is impossible. So, it is necessary to find another way to permanently provide energy to these wireless sensors. The integration and miniaturization of the electronic devices has led to low power consumption systems, which opens a way to another techniques in terms of providing energy. Amongst the possibilities, we can find the Wireless Power Transfer (WPT) and Energy Harvesting (EH). In fact, the electromagnetic energy is nowadays highly available in our planet thanks to all the applications that use wireless systems. We can take advantage of this massive available quantity of energy and use it to power-up the low power wireless sensors. This thesis is incorporated within the framework of WPT and EH. Its objective is the conception and realization of electromagnetic energy harvesters called “Rectenna” in order to supply energy to low power wireless sensors. The term “rectenna” is the combination of two words: Antenna and Rectifier. The Antenna is the module that captures the electromagnetic ambient energy and converts it to a RF signal, the rectifier is the RF circuit that converts this RF signal into a continuous (DC) signal that is used to supply the wireless sensors. In this manuscript, several rectennas will be presented, for different frequencies going from the GSM frequencies (868 MHz, 915 MHz) to the Ku/Ka bands.; L’électronique a connu une évolution incontestable ces dernières années. Les progrès réalisés, notamment dans l’électronique numérique et l’intégration des circuits, ont abouti à des systèmes plus performants, miniatures et à faible consommation énergétique. Les évolutions technologiques, alliant les avancées de l’informatique et des technologies numériques et leur intégration de plus en plus poussée au sein d’objets multiples, ont permis le développement d’un nouveau paradigme de systèmes qualifiés de systèmes cyber-physiques. Ces systèmes sont massivement déployés de nos jours grâce à l’expansion des applications liées à l’Internet Des Objets (IDO). Les systèmes cyber-physiques s’appuient, entre autre, sur le déploiement massif de capteurs communicants sans fil autonomes, ceux-ci présentent plusieurs avantages : • Flexibilité dans le choix de l’emplacement. Ils permettent l’accès à des zones dangereuses ou difficiles d’accès. • Affranchissement des câbles qui présentent un poids, un encombrement et un coût supplémentaire. • Elimination des problèmes relatifs aux câbles (usure, étanchéité…) • Facilité de déploiement de réseaux de capteurs Cependant, ces capteurs sans fils nécessitent une autonomie énergétique afin de fonctionner. Les techniques conventionnelles telles que les batteries ou les piles, n’assurent le fonctionnement des capteurs que pour une durée limitée et nécessitent un changement périodique. Ceci présente un obstacle dans le cas où les capteurs sans fils sont placés dans un endroit où l’accès est impossible. Il est donc nécessaire de trouver un autre moyen d’approvisionner l’énergie de façon permanente à ces réseaux de capteurs sans fil. L’intégration et la miniaturisation des systèmes électroniques ont permis la réalisation de systèmes à faible consommation, ce qui a fait apparaître d’autres techniques en termes d’apports énergétiques. Parmi ces possibilités se trouvent la récupération d’énergie électromagnétique et le transfert d’énergie sans fil (TESF). En effet, l’énergie électromagnétique est de nos jours, omniprésente sur notre planète, l’utiliser donc comme source d’énergie pour les systèmes électroniques semble être une idée plausible et réalisable. Cette thèse s’inscrit dans ce cadre, elle a pour objectif la conception et la fabrication de systèmes de récupération d’énergie électromagnétique pour l’alimentation de réseaux de capteurs sans fil. Le circuit de récupération d’énergie électromagnétique est appelé « Rectenna », ce mot est l’association de deux entités qui sont « antenne » et « rectifier » qui désigne en anglais le « redresseur ». L’antenne permet de récupérer l’énergie électromagnétique ambiante et le redresseur la convertit en un signal continu (DC) qui servira par la suite à alimenter les capteurs sans fil. Dans ce manuscrit, plusieurs rectennas seront présentées, pour des fréquences allant des bandes GSM 868MHz, 915MHz, passant par l’UMTS à 2GHZ et WIFI à 2,45GHz, et allant jusqu’aux bandes Ku et Ka.