1. Caractérisation de MOS par des techniques d'analyse de surface en ultra-vide au cours de leur élaboration in situ
- Author
-
J.C. Dupuy, B. Vilotitch, and A. Sibai
- Subjects
Si 100 ,Silicon ,Analytical chemistry ,Mineralogy ,chemistry.chemical_element ,Auger effect ,02 engineering and technology ,MOS device characterization ,01 natural sciences ,7. Clean energy ,surface structure ,oxide layer ,Auger ,Low Energy Electron Diffraction ,0103 physical sciences ,010302 applied physics ,Auger electron spectroscopy ,Low oxygen ,Low-energy electron diffraction ,silicon ,021001 nanoscience & nanotechnology ,Evaporation (deposition) ,Metal evaporation ,surface analysis ,Auger spectroscopy ,thickness ,semiconductor growth ,metal insulator semiconductor devices ,chemistry ,13. Climate action ,[PHYS.HIST]Physics [physics]/Physics archives ,Oxidation process ,elemental semiconductors ,0210 nano-technology ,silicon compounds ,Si SiO sub 2 interface - Abstract
Silicon (100) cleaned in an ultra-high vacuum chamber is characterized by Auger spectroscopy and Low Energy Electron Diffraction. Starting with a clean sample (diffraction pattern 2×1 for Si(100) and Auger spectra typical of 4-Si bonds), the oxidation is carried out in situ under low oxygen pressure. The thickness and nature of the oxide layer are studied by Auger spectroscopy in the 0-30 A range and MOS device is realized by metal evaporation in situ without intermediate exposure of the sample to the air. Carbon which is the main surface contaminating agent is not introduced by the residual atmosphere during the oxidation process and is located near the Si−SiO 2 interface Le silicium (100), nettoye dans une enceinte ultravide, est caracterise par spectroscopie Auger et diffraction d'electrons de tres faible energie. A partir d'un echantillon propre (diagramme de diffraction Si(100) 2×1, spectre Auger ne contenant que les transitions relatives au silicium en liaison 4-Si), l'oxydation est conduite in situ sous basse pression d'oxygene. L'examen des spectres Auger renseigne sur la nature et sur l'epaisseur des couches d'oxyde, dans la gamme de quelques A a 30 A. Une evaporation metallique permet de realiser des structures MOS sans remise a l'air de l'echantillon. Le carbone, qui apparait frequemment comme principal contaminant de surface, n'est pas introduit par contamination a partir de l'atmosphere residuelle lors de l'oxydation thermique. Sa localisation se situe au voisinage de l'interface Si−SiO 2
- Published
- 1984
- Full Text
- View/download PDF