1. Stratégies alternatives pour la recherche des plus proches voisins dans les espaces multidimensionnels
- Author
-
Valérie Gouet-Brunet, Nouha Bouteldja, Michel Scholl, CEDRIC, Laboratoire, Centre d'études et de recherche en informatique et communications (CEDRIC), and Ecole Nationale Supérieure d'Informatique pour l'Industrie et l'Entreprise (ENSIIE)-Conservatoire National des Arts et Métiers [CNAM] (CNAM)
- Subjects
Multidimensional analysis ,[INFO.INFO-DB]Computer Science [cs]/Databases [cs.DB] ,Theoretical computer science ,Computer science ,business.industry ,Nearest neighbor search ,Online analytical processing ,Search engine indexing ,Statistical model ,similarity search ,[INFO] Computer Science [cs] ,curse of dimensionality ,recherche de similitude ,Tree (data structure) ,HiPER ,[INFO.INFO-DB] Computer Science [cs]/Databases [cs.DB] ,[INFO]Computer Science [cs] ,Artificial intelligence ,multidimensional ,malédiction de la dimensionnalité ,business ,multidimensionnelle ,Information Systems ,Curse of dimensionality - Abstract
In this article, we are interested in accelerating similarity search in high dimensional spaces. The performance of exact nearest neighbors search rapidly decays with the increase of the space dimension (curse of dimensionality effect). This justified a significant effort toward alternate solutions for accelerating similarity search in the past ten years. After a short survey of these new solutions organized into three categories, we describe and evaluate three new strategies: first we propose a progressive exact approach, called HiPeR which is independent of the data as well as of the multidimensional index. We illustrate this approach with the VA-file. Then we study the adaptation of HiPeR to approximate search, using a probabilistic model for precision control. Last we present strategies for efficient processing of multiple queries with application to tree indices as well as HiPeR.
- Published
- 2010