2 results on '"Strain sensor"'
Search Results
2. Diffusion thermique de nanocarbones au voisinage d'une surface de polymère thermoplastique
- Author
-
Pillet, Guillaume, Centre d'élaboration de matériaux et d'études structurales (CEMES), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut de Chimie du CNRS (INC)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), Université Paul Sabatier - Toulouse III, Wolfgang Bacsa, Pascal Puech, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut de Chimie de Toulouse (ICT), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), and Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Couche conductrice ,Strain sensor ,Couche fine ,Couche transparente ,Composite ,Conductive film ,Transparent film ,Carbon nanotube ,Polymère ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Capteur de contrainte ,Thin film ,Polymer ,Nanotube de carbone - Abstract
The use of carbon nanotubes is growing fast since their limited bio-toxicity has been assessed. When embedded in a polymeric matrix, one can tailor the mechanical and electrical properties. In this thesis, we studied the formation and diffusion of multiwall carbon nanotube (MWCNT) thin films at the surface of a high performance thermoplastic polymer, poly-ether-ether-ketone (PEEK) with a high temperature melting point (342 °C). The synthesis and characterization of the electrically conductive composite films consists of different preparation steps (dispersion in liquids, creation of interface by playing on the miscibilities) and the optimization of the annealing parameters followed by electrical and optical measurements. We analyzed in detail the diffusion of the polymer into the nanotube film and studied the diffusion front using electron microscopy. A simple model of the electrical conductivity can explain quantitatively the experimental observations. Correlating the electrical conductivity and optical transmittance of a given composite layer allows studying the diffusion as a function annealing time. Piezo-electrical properties of the fabricated thin composite film are only partially reversible due to limited transfer of mechanical stress to the carbon nanotube network. By controlling the impregnation of the agglomerated nanotubes by the polymer, it is possible to control the electrical properties of the surface which may have applications for the repair of composite surfaces and the restoration of electrical or mechanical surface properties. Raman spectroscopy and transmission electron microscopy have been used for the structural characterization. The presented work is definitively multidisciplinary covering synthesis, structural characterization and electronic transport measurements to understand the formation of electrically conducting surface composites.; Les applications intégrant les nanotubes de carbone augmentent rapidement maintenant que leur bio-toxicité a été évaluée comme limitée. Une fois intégrés dans une matrice polymère, il est possible d'ajuster les propriétés mécaniques et électriques de celle-ci. Dans cette thèse, nous avons étudié la formation et la diffusion de films minces de nanotubes de carbones multi-parois (MWCNT) à la surface d'un polymère thermoplastique haute performance, le poly éther éther cétone (PEEK) possédant un point de fusion élevé (342 ° C). La synthèse des films composites conducteurs électriques comportent différentes étapes de préparation (dispersion dans des liquides, création d'interface en jouant sur les miscibilités). L'optimisation des paramètres de recuit a permis d'avoir des mesures électriques et optiques exploitables. Nous avons analysé en détail la diffusion du polymère dans le film de nanotubes et étudié la dynamique du front de diffusion à l'aide de la microscopie électronique. Un modèle simple pour la conductivité électrique permet expliquer quantitativement les observations expérimentales. La corrélation entre la conductivité électrique et la transmittance optique d'une couche composite donnée, permet d'étudier la diffusion en fonction de la durée de recuit. Les propriétés piézo-électriques des films composites minces fabriqués ne sont que partiellement réversibles en raison du transfert limité des contraintes mécaniques au réseau de nanotubes de carbone. En contrôlant l'imprégnation des agglomérats de nanotubes par le polymère, il est possible de contrôler les propriétés électriques de la surface, ce qui peut avoir des applications pour la réparation de surfaces composites et la restauration de leurs propriétés électriques ou mécaniques. La spectroscopie Raman et la microscopie électronique à transmission ont été utilisées pour la caractérisation structurelle. Le travail présenté est définitivement multidisciplinaire couvrant la synthèse, la caractérisation structurelle et mesures de transport électronique pour comprendre la formation de surface composites conductrices électrique.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.