9 results on '"Breitling, Rainer"'
Search Results
2. Public DNA barcoding data resolve the status of the genus Arboricaria (Araneae: Gnaphosidae)
- Author
-
Breitling, Rainer
- Subjects
Araneae ,DNA barcoding ,cladistics ,phylogenetic systematics ,paraphyly ,spider ,Zoology ,QL1-991 - Abstract
An analysis of public DNA barcoding data confirms that the extraction of Arboricaria Bosmans, 2000 from the genus Micaria Westring, 1851 would require the division of Micaria into at least five (and probably more) individual genera, to restore the monophyly of Micaria sensu stricto. Such an excessive splitting of a homogenous and well-defined genus would be neither desirable nor practical, and consequently Arboricaria should be considered a subjective junior synonym of Micaria, as suggested earlier (syn. conf.).
- Published
- 2017
- Full Text
- View/download PDF
3. East meets West: on the true identity of Cheiracanthium rupestre and Xysticus albomaculatus (Arachnida: Araneae: Eutichuridae, Thomisidae)
- Author
-
Breitling, Rainer, Bauer, Tobias, Grabolle, Arno, Oger, Pierre, Pantini, Paolo, and Van Keer, Johan
- Subjects
Bassaniana ,Coriarachne ,doubtful species ,new synonyms ,nomen dubium ,Ozyptila ,species inquirendae ,Zoology ,QL1-991 - Abstract
Cheiracanthium rupestre Herman, 1879, and Xysticus albomaculatus Kulczyński, 1891, both originally described from Hungary, are among the most rarely reported species of their genera in Europe. Here we report that both of these species have very close relationships to similarly uncommon species originally described from France at about the same time. The specimens currently considered as Cheiracanthium rupestre turn out to be very closely related to, but distinct from, Cheiracanthium striolatum Simon, 1878. However, the original description of C. rupestre does not match these specimens nor any other known species of Cheiracanthium. We therefore consider C. rupestre a nomen dubium and suggest that all previous records of this species after the original description actually refer to Cheiracanthium macedonicum Drensky, 1921. Xysticus albomaculatus, on the other hand, turns out to be a junior synonym of Bassaniana baudueri (Simon, 1877) syn. nov., expanding the range of this species considerably to the East and at the same time confirming that it is a genuine European species, rather than a recent immigrant from North America as previously suspected.
- Published
- 2016
- Full Text
- View/download PDF
4. Phantom spiders 2: More notes on dubious spider species from Europe
- Author
-
Breitling, Rainer, Bauer, Tobias, Schäfer, Michael, Morano, Eduardo, Barrientos, José A., and Blick, Theo
- Subjects
Araneae ,doubtful species ,new synonym ,nomen dubium ,species inquirenda ,Zoology ,QL1-991 - Abstract
A surprisingly large number of European spider species have never been reliably rediscovered since their first description many decades ago. Most of these are probably synonymous with other species or unidentifiable, due to insufficient descriptions or missing type material. In this second part of a series on this topic, we discuss about 100 of these cases, focusing mainly on species described in the early 20th century by Pelegrín Franganillo Balboa and Gabor von Kolosváry, as well as a number of jumping spiders and various miscellaneous species. In most cases, the species turned out to be unidentifiable nomina dubia, but for some of them new synonymies could be established as follows: Alopecosa accentuata auct., nec (Latreille, 1817) = Alopecosa farinosa (Herman, 1879) syn. nov., comb. nov.; Alopecosa barbipes oreophila Simon, 1937 = Alopecosa farinosa (Herman, 1879) syn. nov., comb. nov.; Alopecosa mariae orientalis (Kolosváry, 1934) = Alopecosa mariae (Dahl, 1908) syn. nov.; Araneus angulatus afolius (Franganillo, 1909) and Araneus angulatus atricolor Simon, 1929 = Araneus angulatus Clerck, 1757 syn. nov.; Araneus angulatus castaneus (Franganillo, 1909) = Araneus pallidus (Olivier, 1789) syn. nov.; Araneus angulatus levifolius (Franganillo, 1909), Araneus angulatus niger (Franganillo, 1918) and Araneus angulatus nitidifolius (Franganillo, 1909) = Araneus angulatus Clerck 1757 syn. nov.; Araneus angulatus pallidus (Franganillo, 1909), Araneus angulatus crucinceptus (Franganillo, 1909), Araneus angulatus fuscus (Franganillo, 1909) and Araneus angulatus iberoi (Franganillo, 1909) = Araneus pallidus (Olivier, 1789) syn. nov.; Araneus circe strandi (Kolosváry, 1935) = Araneus circe (Audouin, 1826) syn. nov.; Araneus diadematus nemorosus Simon, 1929 and Araneus diadematus soror (Simon, 1874) = Araneus diadematus Clerck, 1757 syn. nov.; Araneus pyrenaeus (Simon, 1874) = Araneus pallidus (Olivier, 1789) syn. nov.; Araneus sericinus (Roewer, 1942) = Aculepeira armida (Audouin, 1826) syn. nov.; Arctosa brevialva (Franganillo, 1913) = Arctosa villica (Lucas, 1846) syn. nov.; Arctosa cinerea (Franganillo, 1913) [nec Arctosa cinerea (Fabricius, 1777)] = Arctosa perita (Latreille, 1799) syn. nov.; Cresmatoneta eleonorae (Costa, 1883) and Cresmatoneta mutinensis orientalis (Strand, 1914) = Cresmatoneta mutinensis (Canestrini, 1868) syn. nov.; Cyclosa conica albifoliata Strand, 1907, Cyclosa conica defoliata Strand, 1907, Cyclosa conica leucomelas Strand, 1907, Cyclosa conica pyrenaica Strand, 1907, Cyclosa conica dimidiata Simon, 1929, Cyclosa conica rubricauda Simon, 1929 and Cyclosa conica triangulifera Simon, 1929 = Cyclosa conica (Pallas, 1772) syn. nov.; Dendryphantes lanipes C.L. Koch, 1846 = Philaeus chrysops (Poda, 1761) syn. nov.; Diplocephalus alpinus strandi Kolosváry, 1937 = Diplocephalus alpinus (O. Pickard-Cambridge, 1872) syn. nov.; Entelecara strandi Kolosváry, 1934 = Nusoncus nasutus (Schenkel, 1925) syn. nov.; Euophrys rosenhaueri L. Koch, 1856 = Menemerus semilimbatus (Hahn, 1829) syn. nov.; Evarcha falcata nigrofusca (Strand, 1900) = Evarcha falcata (Clerck, 1757) syn. nov.; Gibbaranea bituberculata strandiana (Kolosváry, 1936) = Gibbaranea bituberculata (Walckenaer, 1802) syn. nov.; Heliophanus auratus mediocinctus Kulczyński, 1898 = H. mediocinctus Kulczyński, 1898 stat. nov.; Larinioides sclopetarius jacobea (Franganillo, 1910) = Larinioides sclopetarius (Clerck 1757) syn. conf.; Linyphia triangularis juniperina Kolosváry, 1933 = Linyphia triangularis (Clerck, 1757) syn. nov.; Myrmarachne formicaria tyrolensis (C. L. Koch, 1846) = Myrmarachne formicaria (De Geer, 1778) syn. conf.; Nuctenea umbratica obscura (Franganillo, 1909) = Nuctenea umbratica (Clerck, 1757) syn. nov.; Ozyptila strandi Kolosváry, 1939 = Ozyptila confluens (C. L. Koch, 1845) syn. nov.; Panamomops strandi Kolosváry, 1934 = Saloca diceros (O. Pickard-Cambridge, 1871) syn. nov.; Pardosa luctinosa marina (Kolosváry, 1940) and Pardosa luctinosa etsinensis Schenkel, 1963 = Pardosa luctinosa Simon, 1876 syn. nov.; Pardosa wagleri atra (Giebel, 1869) nomen oblitum = Pardosa saturatior Simon, 1937 syn. nov.; Poecilochroa hungarica Kolosváry, 1934 = Aphantaulax trifasciata (O. Pickard-Cambridge, 1872) syn. nov.; Philaeus albovariegatus (Simon, 1868) = Philaeus chrysops (Poda, 1761) syn. nov.; Philaeus superciliosus Bertkau, 1883 = Sandalodes superbus (Karsch, 1878) syn. nov.; Philaeus varicus (Simon, 1868) = Carrhotus xanthogramma (Latreille, 1819) syn. conf.; Salticus unispinus (Franganillo, 1910) = Pellenes nigrociliatus (Simon, 1875) syn. nov.; Sitticus manni (Doleschall, 1852) nomen oblitum = Heliophanus melinus L. Koch, 1867 syn. nov.; Sitticus sexsignatus (Franganillo, 1910) = Sitticus floricola (C. L. Koch, 1837) syn. nov.; Steatoda latrodectoides (Franganillo, 1913) = Steatoda paykulliana (Walckenaer, 1805) syn. nov.; Synema globosum clarum Franganillo, 1913, Synema globosum flavum Franganillo, 1913 and Synema globosum pulchellum Franganillo, 1926 = Synema globosum (Fabricius, 1775) syn. nov.; Uloborus pseudacanthus Franganillo, 1910 = Uloborus walckenaerius Latreille, 1806 syn. nov.; Zelotes similis hungaricus Kolosváry, 1944 = Zelotes similis (Kulczyński, 1887) syn. nov.; Zilla diodia embrikstrandi Kolosváry, 1938 = Zilla diodia (Walckenaer, 1802) syn. nov.; Zygiella x-notata chelata (Franganillo, 1909) and Zygiella x-notata parcechelata (Franganillo, 1909) = Zygiella x-notata (Clerck, 1757) syn. nov.; Teutana grossa obliterata Franganillo, 1913 = Steatoda grossa (C. L. Koch, 1838) syn. nov.
- Published
- 2016
- Full Text
- View/download PDF
5. Phantom spiders: notes on dubious spider species from Europe
- Author
-
Breitling, Rainer, Lemke, Martin, Bauer, Tobias, Hohner, Michael, Grabolle, Arno, and Blick, Theo
- Subjects
Araneae ,doubtful species ,new synonyms ,nomen dubium ,species inquirendae ,Zoology ,QL1-991 - Abstract
A surprisingly large number of European spider species have never been reliably rediscovered since their first description many decades ago. Most of these are probably synonymous with other species or unidentifiable, due to insufficient descriptions or missing type material. Here we discuss about 50 of these cases, declare some names as nomina dubia and establish the following new or re-confirmed synonymies: Agelena mengeella Strand, 1942 = Allagelena gracilens (C. L. Koch, 1841) syn. conf.; Anyphaena accentuata obscura (Sundevall, 1831) = Anyphaena accentuata (Walckenaer, 1802) syn. conf.; Anyphaena accentuata obscura Lebert, 1877 = Anyphaena accentuata (Walckenaer, 1802) syn. nov.; Araneus diadematus stellatus C. L. Koch, 1836 = Araneus diadematus Clerck, 1757 syn. nov.; Araneus diadematus islandicus (Strand, 1906) = Araneus diadematus Clerck, 1757 syn. nov.; Araneus quadratus minimus Simon, 1929 = Araneus quadratus Clerck, 1757 syn. nov.; Araneus quadratus subviridis (Franganillo, 1913) = Araneus quadratus Clerck, 1757 syn. nov.; Centromerus unctus (L. Koch, 1870) = Leptorhoptrum robustum (Westring, 1851) syn. nov.; Clubiona caliginosa Simon, 1932 = Clubiona germanica Thorell, 1871 syn. nov.; Coelotes atropos anomalus Hull, 1955 = Coelotes atropos (Walckenaer, 1830) syn. nov.; Coelotes atropos silvestris Hull, 1955 = Coelotes atropos (Walckenaer, 1830) syn. nov.; Coelotes obesus Simon, 1875 = Pireneitega pyrenaea (Simon, 1870) syn. conf.; Coelotes simoni Strand, 1907 = Coelotes solitarius (L. Koch, 1868) syn. nov.; Diplocephalus semiglobosus (Westring, 1861) nomen oblitum = Entelecara congenera (O. P.-Cambridge, 1879) syn. nov.; Drassodes voigti (Bösenberg, 1899) = Scotophaeus blackwalli (Thorell, 1871) syn. conf.; Erigone decens Thorell, 1871 = Hylyphantes graminicola (Sundevall, 1830) syn. nov.; Liocranoeca striata gracilior (Kulczynski, 1898) = Liocranoeca striata (Kulczynski, 1882) syn. conf.; Phlegra rogenhoferi (Simon, 1868) = Phlegra cinereofasciata (Simon, 1868) syn. nov.; Styloctetor stativus (Simon, 1881) = Styloctetor compar (Westring, 1861) syn. nov. and comb. nov.; Tapinocyba bilacunata (L. Koch, 1881) = Silometopus incurvatus (O. P.-Cambridge, 1873) syn. nov.; Theridion varians melanotum Strand, 1907 = Theridion varians Hahn, 1833 syn. nov.; Thomisus trigonus Giebel, 1869 = Pistius truncatus (Pallas, 1772) syn. nov.; Titanoeca psammophila Wunderlich, 1993 = Titanoeca spominima (Taczanowski, 1866) syn. nov. and comb. nov.; Xysticus paniscus L. Koch, 1875 = Xysticus lineatus (Westring, 1851) syn. conf.
- Published
- 2015
- Full Text
- View/download PDF
6. Liste der Populärnamen der Spinnen Deutschlands (Araneae)
- Author
-
Breitling, Rainer, Merches, Eveline, Muster, Christoph, Duske, Katja, Grabolle, Arno, Hohner, Michael, Komposch, Christian, Lemke, Martin, Schafer, Michael, and Blick, Theo
- Subjects
common names ,nomenclature - Abstract
List of German names for the spiders of Germany (Araneae). Common names play an important role in the efficient communication of scientific results in biology, for instance in the area of applied conservation science, in popular articles and in Citizen Science projects. Common names can increase the readability of texts aimed at the general public and increase the relatability of the described species. For many groups of invertebrates such names are not generally available and often there are no (published) lists of common names, resulting in different names being used for the same species, thus subverting the aims stated above. Here, we propose common German names for all spider genera and species recorded from Germany, and some whose occurrence is expected in this country. Many of these names are coined here for the first time.
- Published
- 2020
7. Stoffwechselwege vom Reißbrett: neue Ansätze der Naturstoffbiochemie: Synthetische Mikrobiologie
- Author
-
Breitling, Rainer and Takano, Eriko
- Published
- 2013
- Full Text
- View/download PDF
8. Phylogenetic and bioinformatic study of 17beta-hydroxysteroid dehydrogenases
- Author
-
Breitling, Rainer, Adamski, J. (Priv.-Doz, Dr.), Balling, Rudolf (Prof. Dr.), and Scherer, Siegfried (Prof. Dr.)
- Subjects
Biowissenschaften, Biologie ,evolution ,bioinformatics ,hydroxysteroid dehydrogenases ,ddc:570 ,ddc:540 ,Chemie ,Evolution ,Bioinformatik ,Hydroxysteroid-Dehydrogenasen - Abstract
Diese Arbeit demonstriert die kombinierte Anwendung unterschiedlicher bioinformatischer Verfahren auf die Familie der 17beta-Hydroxysteroid-Dehydrogenasen. Diese Protein-Familie ist an der Aktivierung und Inaktivierung von Steroid-Hormonen beteiligt, die sie an der Position 17 des Steroid-Grundgerüstes reduzieren bzw. oxidieren. Verschiedene 17beta-HSDs sind an humanen Erkrankungen beteiligt, z.B. an Pseudohermaphroditismus (17beta-HSD3) oder Zellweger-artigem Syndrom (17beta-HSD4). Außerdem wird den 17beta-HSDs eine Rolle bei der Entstehung und Proliferation von verschiedenen Tumoren zugeschrieben. In dieser Arbeit wird ein neues Evolutionsszenario für die 17beta-HSDs und ihre Verwandten beschrieben. Durch Vereinigung von Proteinstrukturvergleichen und Sequenzvergleichen zu einem einheitlichen Modell war es möglich, einen zuverlässigen Stammbaum der Proteinfamilie zu erstellen. In diesem Stammbaum zeigte sich eine frühe, grundlegende Teilung der 17beta-HSDs in zwei Hauptklassen. Durch Feststellung der Stammbaumwurzel war es möglich den zeitlichen Verlauf der Evolutionsereignisse festzustellen, die zur Entwicklung der Proteinvielfalt in der HSD-Familie geführt haben. Eine umfassende bioinformatische Studie wurde durchgeführt, um die physiologische Funktion der 17beta-HSD Typ 7 festzustellen. Durch Kombination von Expressionsdaten, phylogenetischer Rekonstruktion und Strukturanalysen war es möglich, zu zeigen, dass dieses Östrogen-synthetisierende Enzym wahrscheinlich zuerst an der Cholesterin-Biosynthese beteiligt war, und zwar bei der Reduktion von 3-Ketosteroiden. 17beta-HSD7 ist beim Menschen fast ubiquitär exprimiert und zeigt signifikante Ähnlichkeit mit der 3-Ketosteroid-Reduktase Erg27p aus Hefen. Das Protein fehlt dagegen in Cholesterin-auxotrophen Organismen. Zusätzliches Gewicht erhält diese Vermutung durch die Entdeckung eines spezifischen Promotormoduls, das 17beta-HSD7 mit Proteinen des Cholesterinmetabolismus (IDI1 und MLN64) gemeinsam hat. Anschließende Reaktionen des Cholesterin-Synthesewegs werden von Proteinen katalysiert, deren Mutation zu den Entwicklungsdefekten CHILD-Syndrom und CDPX2-Syndrom führt. Damit ist auch 17beta-HSD7 ein Kandidat für ähnliche Erkrankungen. Durch die Integration von Strukturdaten mit der statistischen Auswertung von Proteinalignments wurden unerwartete konservierte Elemente in der dreidimensionalen Struktur von 17beta-HSD Typ 5 und ihren Verwandten entdeckt. Ein 3D-Modell des Enzyms erm"oglichte es, Struktur-Funktions-Beziehungen von Phytoöstrogenen aufzuklären, die als Inhibitoren der 17beta-HSD5 wirken. Außerdem war es möglich die pH-Abhängigkeit der Inhibition durch Glycyrrhetin-Säure zu erklären. Die notwendigen Methoden zur Evolutionsanalyse großer Datensätze wurden in einer Pilotstudie entwickelt und getestet. Dazu wurde die Evolution der Paired-Box (Pax)-Familie untersucht. Es konnte gezeigt werden, dass der nächste Verwandte dieser Proteine eine Tc1-Transposase ist. Das erste Pax-Protein entstand am Anfang der Metazoen-Evolution durch ein einmaliges Fusionsereignis, bei dem sich die DNA-Bindungsdomäne einer Transposase mit einer Homöodomäne zu einem neuen Transkriptionsfaktor verband. Diesem Fusionsereignis folgte dann eine schnelle Aufspaltung der Familie in mehrere Untergruppen. Durch die Entdeckung der Verwandtschaft mit den Transposasen ist es möglich, nicht nur die Einteilung der Pax-Proteine festzustellen, sondern auch den zeitlichen Ablauf ihrer Evolution zu bestimmen. This work describes the integrative application of various bioinformatic approaches to the family of 17beta-hydroxysteroid dehydrogenases. This protein family is involved in the activation and inactivation of steroid hormones by reduction and oxidation at position 17 of the steroid backbone. Several family members are known to be involved in human disorders (e.g. pseudohermaphroditism or Zellweger-like syndrome) and are implicated in cancerogenesis and tumor proliferation. A reliable evolutionary scenario for the large family of HSD-related proteins was constructed by combining structure-based and sequence-based comparisons into a single phylogenetic tree. The tree indicates a fundamental subdivision of the 17beta-HSDs into two major groups. By determining the root of the phylogenetic tree it was possible to evaluate the time course of evolutionary events leading to the diversity 17beta-HSDs. A comprehensive bioinformatic study was performed to assess the physiological function of human 17beta-HSD type 7. Integrating expression data, phylogenetics and structural analyses it was possible to demonstrate that this estrogenic enzyme probably has an ancestral function in cholesterol metabolism, namely the reduction of 3-ketosteroids. Adjacent steps in the pathway are catalysed by proteins that are mutated in developmental defects (CHILD syndrome and CDPX2 syndrome), making 17beta-HSD7 a likely candidate for similar disorders. The combination of protein structure and statistical evaluation enabled the identification of unexpected conserved structural elements in 17beta-HSD type 5 and its relatives. A 3D-model of the enzyme allowed the explanation of the inhibitory capacity of phytoestrogens acting on 17beta-HSD5. The computer algorithm developed for that purpose is universally applicable and might be used for the structural analysis of other large protein families. The techniques necessary for the evolutionary analysis of large sequence datasets were established and validated in a pilot study on paired-box proteins. It was possible to find the ancestors of the paired-box family among Tc1-transposase proteins. It is shown that paired-box proteins originated at the beginning of metazoan evolution by a single fusion event between a transposase DNA binding domain and a homeobox protein. The fusion event was followed by a rapid diversification of the protein family.
- Published
- 2008
9. List of German names for the spiders of Germany (Araneae).
- Author
-
Breitling, Rainer, Merches, Eveline, Muster, Christoph, Duske, Katja, Grabolle, Arno, Hohner, Michael, Komposch, Christian, Lemke, Martin, Schäfer, Michael, and Blick, Theo
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.