1. [Interrelationships between carnitine metabolism and fatty acid assimilation in Pseudomonas putida (author's transl)]
- Author
-
H P, Kleber, H, Seim, H, Aurich, and E, Strack
- Subjects
Enzyme Activation ,Quaternary Ammonium Compounds ,Hydroxybutyrate Dehydrogenase ,Dogs ,Carnitine ,Enzyme Induction ,Pseudomonas ,Fatty Acids ,Animals ,Enzyme Repression ,Oxidoreductases - Abstract
The carnitine metabolism and some relations to the fatty acid metabolism were studied in Pseudomonas putida by means of control of growth, analysis of metabolites, and determination of enzyme activites. The strain grew on gamma-butyrobetaine, D,L- and L-carnitine, glycinebetaine, choline, D,L-norcarnitine, D,L-gamma-amino-beta-hydroxybutyrate, and D,L-beta-hydroxybuty-rate. Although the strain used straight-chain fatty acids of 2-16 C-atoms, it was only able to grow on O-acyl-L-carnitines of 10 or more C-atoms in the acyl-group. Addition of carnitine stimulated the growth on long-chain fatty acis. The formation of trimethylamine increased, if L-carnitine or gamma-butyrobetaine were the only carbon sources, and decreased, if these trimethylammonium compounds were carbon as well as nitrgen sources. L-Carnitine induced the carnitine dehydrogenase as well as the beta-hydroxybutyrate dehydrogenase, gamma-Butyrobetaine as carbon and nitrogen source induced the carnitine dehydrogenase, too. In the crude extract the specific activiteis of beta-hydroxybutyrate dehydrogenase were 0.7 or 1.6 mumoles.min-1.mg-1 after growth on L-carnitine and D,L-beta-hydroxybutyrate, respectively. The synthesis of both enzymes was repressed by glycinebetaine, glucose and long-chain fatty acis. Dependent on the nitrogen source L-carnitine was catabolized via two different pathways. more...
- Published
- 1978