Rhenium(I) Complexes in Photodynamic Therapy Photodynamic therapy (PDT) has become a promising field in cancer treatment. This approach is based on a photosensitizer (PS) which is irradiated with visible light in the presence of oxygen to generate reactive oxygen species (ROS), like 1O2, ultimately leading to cell death. Until now many well-established PS depend on purely organic molecules like porphyrin derivatives, chlorines, phthalocyanines or porphycenes. However, metal complexes constitute an attractive class of compounds in PDT due to their ability to produce singlet oxygen in a more efficient way. Furthermore, they have features such as structural diversity and complexity, tunable ligand exchange kinetics or unusual reactivities. This dissertation deals with the development of rhenium(I) complexes for photoactivated cancer therapy. In order to improve their stability and excitation wavelength the scaffold of the rhenium(I) complexes with a pyridocarbazole ligand was functionalized. By replacing the monodentate ligand against a strong sigma-donor, like trimethylphosphine or imidazole, no signs of decomposition can be monitored by 1H NMR spectroscopy. The introduction of a pi-donating substituent in the indole and a sigma-accepting substituent in the pyridine moiety of the pyridocarbazole ligand leads to a bathochromatic shift of the absorbance band. In this aspect a rhenium(I) complex, which initiates apoptosis in HeLa cells at wavelengths of > 620 nm, could be synthesized. To get an idea which mechanisms may occur in the cell further experiments were carried out. In this aspect the synthesis of a biotin-labeled complex is described which was localized in HeLa cells. The rhenium(I) compound seems to accumulate in different membranes of the cell and introduces the mechanism of lipid peroxidation which leads to cell death by apoptosis. Metal complexes with a pyridocarbazole ligand are well-known protein kinase inhibitors. Therefore the rhenium(I) compounds were tested for their inhibitory properties which led to IC50 values in the nanomolar range for the protein kinase Pim1 as model system at an ATP concentration of 10 µM. Thus, the organometallics show a dual function in a single drug which render them an attractive class of compounds for photodynamic as well as targeted therapy. Phenanthroline Complexes as Protein Kinase Inhibitors One project in the Meggers group deals with the design of metal complexes as selective and potent protein kinase inhibitors. The compounds are based on a pyridocarbazole ligand which forms hydrogen bonds to the hinge region of the ATP binding pocket. One major drawback of this system is the lengthy and complicated synthesis which causes problems for scale-up procedures. Furthermore, it tends to address only a few kinases within the human kinome. This thesis describes the design of a new pharmacophore ligand which is based on a phenanthroline system. The synthesized ruthenium(II) complex is a micromolar inhibitor for the protein kinases DYRK1A, Pim1 and Pim2 at an ATP concentration of 1 µM. A cocrystal structure of the compound with Pim1 reveals that the complex forms no hydrogen bonds with the hinge region of the ATP binding site, but instead with amino acid residues, which are located at the opposite site of the binding pocket. So the organometallic might be a promising lead structure for the development of potent and selective non-hinge-binding ATP-competitive inhibitors., Rhenium(I)-Komplexe für die Photodynamische Therapie Die photodynamische Therapie (PDT) ist eine vielversprechende Methode für die Behandlung von Krebs. Hierbei wird ein Photosensibilisator (PS) in Anwesenheit von Sauerstoff belichtet, um verschiedene reaktive Sauerstoff-Spezies (ROS), wie 1O2, zu produzieren, die im Anschluss den Zelltod induzieren. Bis jetzt beruhen viele der etablierten PS auf einem rein organischen Grundgerüst, wie Porphyrine, Chlorine, Phthalocyanine oder Porphycene. Bei Metallkomplexen handelt es sich aber um eine attraktive Verbindungsklasse für die PDT aufgrund ihrer Eigenschaft Singulett-Sauerstoff deutlich effektiver zu produzieren. Außerdem weisen sie eine größere strukturelle Vielfalt oder ungewöhnliche Reaktivitäten auf. Diese Dissertation beschäftigt sich mit der Entwicklung von Rhenium(I)-Komplexen für die photoaktiverte Krebstherapie. Um die Stabilität bzw. die Anregungswellenlänge dieser Verbindungen mit Pyridocarbazol-Ligand zu optimieren, wurde das Grundgerüst modifiziert. Durch den Austausch des monodentaten Liganden durch einen starken sigma-Donor, wie Trimethylphosphin oder Imidazol, konnte die Stabilität deutlich erhöht werden. Die Einführung eines pi-Donors am Indolring und eines sigma-Akzeptors am Pyridinring des Pyridocarbazol-Liganden führt zu einem bathochromen Shift der Absorptionsbande. Dadurch war es möglich, eine Rhenium(I)-Verbindung darzustellen, die sogar bei einer Wellenlänge > 620 nm den Zelltod in HeLa-Zellen induziert. Um einen Eindruck davon zu bekommen, welche Mechanismen innerhalb der Zelle ablaufen, wurden weitere Experimente durchgeführt. In diesem Zusammenhang konnte ein biotinylierter Komplex dargestellt werden, der in HeLa-Zellen lokalisiert wurde. Diese Rhenium(I)-Verbindung scheint sich in verschiedenen Membranen der Zelle anzulagern und dort den Mechanismus der Lipidperoxidation zu starten. Metallverbindungen mit einem Pyridocarbazol-Liganden sind sehr bekannte Proteinkinase-Inhibitoren. Aus diesem Grund wurden die Rhenium(I)-Komplexe ebenfalls auf ihre inhibitorischen Eigenschaften untersucht, was sich in IC50-Werten im nanomolaren Bereich für die Proteinkinase Pim1 bei einer ATP-Konzentration von 10 µM widerspiegelt. Diese Verbindungen zeigen also eine duale Funktionalität, da sie photozytotoxische Eigenschaften besitzen und Proteinkinasen inhibieren. Phenanthrolin-Komplexe als Proteinkinase-Inhibitoren Ein Teilgebiet der Arbeitsgruppe Meggers beschäftigt sich mit der Darstellung von Metallverbindungen als selektive und potente Proteinkinase-Inhibitoren. Die Komplexe basieren auf einem Pyridocarbazol-Liganden, der Wasserstoffbrücken-Bindungen zu der Scharnierregion der aktiven Tasche einer Kinase ausbilden kann. Ein großer Nachteil dieses Systems ist die aufwendige Synthese, die zu Problemen bei der Durchführung in größeren Maßstäben führt. Außerdem besitzt der Pyridocarbazol-Ligand eine Präferenz für einige Proteinkinasen. Diese Arbeit beschreibt die Darstellung eines neuen Pharmakophor-Liganden, der auf einem Phenanthrolin-Grundgerüst beruht. Der synthetisierte Ruthenium(II)-Komplex ist ein micromolarer Inhibitor für die Proteinkinasen DYRK1A, Pim1 und Pim2 bei einer ATP-Konzentration von 1 µM. Eine Co-Kristallstruktur der Verbindung mit Pim1 zeigt, dass der Komplex keine Wasserstoffbrücken-Bindungen mit der Scharnierregion der aktiven Tasche ausbildet. Stattdessen wechselwirkt er mit Aminosäure-Seitenketten, die auf der gegenüberliegenden Seite lokalisiert sind. Diese Organometallverbindung könnte also eine vielversprechende Leitstruktur für die Entwicklung potenter und selektiver Proteinkinase-Inhibitoren sein, die nicht mit der Scharnierregion wechselwirken.