1. Modelling and Validation of Environmental Suitability for Schistosomiasis Transmission Using Remote Sensing
- Author
-
Walz, Yvonne, Wegmann, Martin, Dech, Stefan, Vounatsou, Penelope, Poda, Jean-Noël, N'Goran, Eliézer K., Utzinger, Jürg, and Raso, Giovanna
- Subjects
lcsh:Arctic medicine. Tropical medicine ,Models, Statistical ,Adolescent ,lcsh:RC955-962 ,lcsh:Public aspects of medicine ,Snails ,lcsh:RA1-1270 ,Surface water ,Deutsches Fernerkundungsdatenzentrum ,Remote sensing ,Parasitic diseases ,Habitats ,Lakes ,Cote d'Ivoire ,Rivers ,Burkina Faso ,Remote Sensing Technology ,Humans ,Schistosomiasis ,Child ,Epidemiologic Methods ,ddc:526 ,Ecosystem ,Research Article - Abstract
Background Schistosomiasis is the most widespread water-based disease in sub-Saharan Africa. Transmission is governed by the spatial distribution of specific freshwater snails that act as intermediate hosts and human water contact patterns. Remote sensing data have been utilized for spatially explicit risk profiling of schistosomiasis. We investigated the potential of remote sensing to characterize habitat conditions of parasite and intermediate host snails and discuss the relevance for public health. Methodology We employed high-resolution remote sensing data, environmental field measurements, and ecological data to model environmental suitability for schistosomiasis-related parasite and snail species. The model was developed for Burkina Faso using a habitat suitability index (HSI). The plausibility of remote sensing habitat variables was validated using field measurements. The established model was transferred to different ecological settings in Côte d’Ivoire and validated against readily available survey data from school-aged children. Principal Findings Environmental suitability for schistosomiasis transmission was spatially delineated and quantified by seven habitat variables derived from remote sensing data. The strengths and weaknesses highlighted by the plausibility analysis showed that temporal dynamic water and vegetation measures were particularly useful to model parasite and snail habitat suitability, whereas the measurement of water surface temperature and topographic variables did not perform appropriately. The transferability of the model showed significant relations between the HSI and infection prevalence in study sites of Côte d’Ivoire. Conclusions/Significance A predictive map of environmental suitability for schistosomiasis transmission can support measures to gain and sustain control. This is particularly relevant as emphasis is shifting from morbidity control to interrupting transmission. Further validation of our mechanistic model needs to be complemented by field data of parasite- and snail-related fitness. Our model provides a useful tool to monitor the development of new hotspots of potential schistosomiasis transmission based on regularly updated remote sensing data., Author Summary Schistosomiasis is a parasitic worm infection that is widespread in sub-Saharan Africa where people get in contact with open freshwater bodies. For many years, the strategy to control schistosomiasis was to prevent morbidity through deworming of school-aged children. Recently, transmission control has gained interest, which requires information where and when exactly transmission occurs. We investigated the potential of high-resolution remote sensing data to delineate potential transmission sites of schistosomiasis. Additionally, we characterized the habitat suitability for parasites and snails that are implicated in the schistosomiasis life cycle. Based on environmental field measurements in Burkina Faso and ecological data from the literature, functions of relative suitability were derived to determine the ecological relationship between the environment and snail and parasite fitness. These functions were employed to model the habitat suitability by using remote sensing variables that are aggregated to a habitat suitability index. We found that temporal dynamic of water bodies is one of the most relevant variables. Less relevant were topographic drainage lines. Our model also revealed significant relations with disease prevalence in different ecological zones of Côte d’Ivoire, and thus provides a useful tool to monitor new hotspots of disease transmission based on regularly updated remote sensing data.
- Published
- 2015