1. Genetic assessment of residual feed intake as a feed efficiency trait in the Pacific white shrimp Litopenaeus vannamei
- Author
-
Ping Dai, Sheng Luan, Xia Lu, Kun Luo, Xianhong Meng, Baoxiang Cao, and Jie Kong
- Subjects
Animal culture ,SF1-1100 ,Genetics ,QH426-470 - Abstract
Abstract Background Residual feed intake (RFI) was investigated as a measure of feed efficiency in a breeding population of Litopenaeus vannamei. Shrimp from 34 families were housed individually and feed efficiency and growth traits were recorded during two successive growth periods. The objectives of this study were (1) to estimate the heritability of RFI and related traits, including feed efficiency ratio (FER), average daily gain (ADG) and daily feed intake (DFI), (2) to determine the relationships between RFI and other traits, and (3) to evaluate the variation of these traits across two growth periods. Results Shrimp displayed large inter-individual variation in RFI, FER, ADG and DFI during each growth period. Heritability estimates of all these traits during both periods reached high values (0.577 ± 0.232 to 0.707 ± 0.252). RFI showed weak and no genetic correlations with ADG during the two growth periods between days 1 to 21 (0.135 ± 0.204) and 22 to 42 (–0.018 ± 0.128), respectively, but high positive genetic correlations with DFI (>0.8). Weak and moderate negative genetic correlations were observed between RFI and FER during the two periods (–0.126 ± 0.208 and –0.387 ± 0.183). As evidenced by the high genetic correlations between the two periods for each trait (>0.6), trait performance of the shrimp tended to be consistent across periods. Conclusions For the first time, accurate measurement of individual feed efficiency on a large scale was achieved in shrimp. Although the estimated heritability reported here for RFI may be overestimated, it is a heritable trait in L. vannamei that can be improved by genetic improvement. For L. vannamei, the biggest potential advantage in using RFI as a measure of feed efficiency is that it is independent of growth rate, and thus genetic selection on RFI has the potential to improve feed efficiency and reduce feed intake, without compromising growth performance.
- Published
- 2017
- Full Text
- View/download PDF