1. 微視的弾性勾配場設計による細胞運動操作.
- Author
-
木戸秋悟
- Abstract
Well-designed microscopic elasticity gradients on cell culture substrate can be an useful platform for investigating the mechanics of cell movements. To understand mechanical aspect of cell movement, we have focused on durotaxis which is a form of cell migration guided by elasticity gradient on extracellular millieu. To systematically investigate the effect of the elasticity gradient on emergence of cell polarity that determines direction of cell movement, we have originally developed microelastically-patterned hydrogel substrate, which enable manipulating the cell durotaxis. Width, strength, and curvature of the elasticity gradient around the elasticity transition region could be successfully designed by employing the mask-free photolithographic microelasticity patterning system. In this mini-review, the following three issues are discussed: 1) determining a threshold strength of elasticity gradient that induces durotaxis, 2) designing an asymmetric elastic gradient that rectifies durotactic cells, and 3) investigating how the durotaxis depends on curvatures on the elasticity boundaries. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF