The non-linear science is a central topic covering several investigation areas, such as biology, chemistry, mathematics and physics. In the first part of this thesis, we studied the non-linearity in the scope of classical field theory. The discussions are based on static solutions in (1, 1) space-time dimensions, and they are focused on kinks and lumps defects. In the related procedures, we show several techniques which allowed us to determine new models with their respective analytical solutions. The main mathematical tool to obtain these results is the so called deformation method, which was also an essential piece in the construction of a new extension method. This method presents the determination of new two scalar fields models from the coupling between two one scalar field systems. The method was analyzed carefully, as well as the linear stability, the zero modes, the total energy and the superpotentials, related with the new families of potentials. Furthermore, in the second part we presented the basics concepts about the Brownian Motion, where we analised the features of the solution of the Langevin Equation, and we also introduced a path integral approach to this problem in a quantum field theory way. Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES A ciência não-linear é tema central de diversas linhas de investigação, cobrindo áreas como a biologia, a física, a matemática e a química. Nossa primeira vertente de trabalho nesta tese, consiste no estudo de não-linearidades via abordagem de teoria clássica de campos. As discussões estão baseadas em soluções estáticas em (1, 1) dimensões, com destaque para o chamados defeitos tipo kink e lump. Nos procedimentos relatados, discorremos a respeito de diversas técnicas para a determinação de novos modelos com suas respectivas soluções analíticas. Um ferramental fundamental para a obtenção desses resultados é o chamado método de deformação, o qual também foi parte essencial para a criação de um método de extensão de modelos, onde visamos a construção de modelos de dois campos reais a partir do acoplamento entre dois modelos de um campo. Tal método também foi exposto em detalhes, bem como as análises sobre estabilidade linear, cálculo de modos zeros, determinação da energia total e dos superpotenciais, relativos às novas famílias de potenciais. Já a segunda linha de pesquisa, refere-se aos conceitos básicos do movimento browniano, onde analisamos as propriedades da solução da equação de Langevin, e na introdução de uma abordagem via integrais de trajetória para descrevê-lo nos moldes de teoria de quântica de campos.