1. Antenna Array Based on Fabry–Perot Cavity with Mechanoelectrical Beam Steering
- Author
-
Y. A. Litinskaya, S. V. Polenga, and Y. P. Salomatov
- Subjects
scanning antenna array ,fabry–perot cavity ,selective surface ,satellite communication ,Electronics ,TK7800-8360 - Abstract
Introduction. Introduction. Low-profile effective antenna systems (AS) with maintained directional characteristics in a wide sector of scanning angles are required for satellite communication at mobile objects. This article investigates the directional characteristics of a subarray based on a Fabry–Perot cavity and an antenna array with mechanoelectrical beam steering.Aim. To investigate a Fabry–Perot based antenna array with mechanoelectrical beam steering and to estimate its gain and directivity at different scanning angles.Materials and methods. Computer simulations were carried out using the finite element method (FEM), finite difference time domain (FDTD) method and template based post-processing.Results. A subarray based on a Fabry–Perot cavity for an antenna array with mechanoelectrical beam steering was simulated. The efficiency of the subarray comprised at least 65 % in the 11.9…12.5 GHz frequency band. An antenna array based on a Fabry–Perot cavity with mechanoelectrical beam steering was developed and investigated. The calculated characteristics of the developed antenna array agreed well with those obtained experimentally. The gain degradation did not exceed 2.5 dB in the 0…70° scanning angle range. The advantages of using antenna elements based on a Fabry–Perot cavity and developing on their basis mobile satellite antenna systems with wide-angle scanning are noted.Conclusion. The use of a radiator based on a Fabry–Perot cavity and the development on it basis an antenna array with mechanoelectrical beam steering provides an antenna efficiency of no less than 0.5 with a gain degradation of no more than 2.5 dB in the scanning angle range 0…70° from 11.9 to 12.5 GHz.
- Published
- 2021
- Full Text
- View/download PDF