1. Napovedovanje vrednosti nepremičnin iz podatkov Evidence trga nepremičnin
- Author
-
Koncilja, Aleš and Lavbič, Dejan
- Subjects
čiščenje podatkov ,evidenca trga nepremičnin ,vrednost nepremičnine ,Real Estate Market Record ,forecast ,data mining ,value of Real Estate ,podatkovno rudarjenje ,napoved ,data cleaning - Abstract
Trgovanje z nepremičninami (oddajanje, prodajanje) poteka vsak dan, zato je napovedovanje vrednosti nepremičnin zelo pomembno. Cilj magistrske naloge je bil razviti napovedni model vrednotenja nepremičnin s podatkovnim rudarjenjem, ki napoveduje vrednost nepremičnine (pogodbeno najemnino oz. ceno za stanovanja) na podlagi podatkov iz različnih virov. Pomemben faktor pri pripravi zbirk podatkov je bil vključevanje podatkov, ki posredno vplivajo na vrednost nepremičnin. Izhodiščno zbirko podatkov ETN smo razširili z dodatnimi podatki in ustvarili dve novi zbirki podatkov – najeme in kupoprodaje stanovanj. Nad zbirkama smo izvajali postopke čiščenja (odstranjevanje osamelcev, vstavljanje manjkajočih vrednosti). Izvedli smo tudi izbor pomembnih atributov. Z metodama za napovedovanje (linearna regresija, naključni gozdovi) smo iz zbirk podatkov zgradili napovedne modele za napovedovanje vrednosti nepremičnin ter jih ovrednotili. Pri napovedovanju pogodbenih cen za stanovanja smo z naključnimi gozdovi dosegli najnižjo povprečno absolutno napako (MAE) 10.986,15 €, kar je boljše kot z linearno regresijo, kjer je MAE 14.496,75 €. Obe metodi presežeta MAE 25.424,58 € ničelnega modela. Tudi pri napovedovanju pogodbenih najemnin za stanovanja smo z naključnimi gozdovi dobili boljše rezultate (MAE je 63,74 €) kot z linearno regresijo (MAE je 81,20 €), kar je boljše od ničelnega modela (MAE je 95,15 €). Napovedni model vključuje stanje trga in predstavlja alternativo trenutnemu GURS vrednotenju, ki temelji na kompleksnih modelih vrednotenja. Real Estate trading (renting, selling) is carried out every day, so the forecasting the value of Real Estate is very important. The aim of the master's thesis was to develop a forecast model for Real Estate valuation with data mining, which forecast the value of Real Estate (contract rent or price for apartment) based on data from various sources. An important factor in the preparation of data sets was the integration of data that indirectly affects the value of Real Estate. We extended the baseline REMR data set with additional data and created two new data sets - renting and buying apartments. We carried out cleaning procedures on these data sets (removal of outliers, imputation of missing values). We also carried out a feature selection. Using forecast methods (linear regression, random forests), we made data from the data sets forecast models for forecasting the value of Real Estate and evaluated them. When forecasting contract prices for apartments, random forest defects reached the lowest mean absolute error (MAE) of € 10,986.15, which is better than with linear regression, where the MAE is € 14,496.75. Both methods exceed the MAE of € 25,424.58 of the null model. Also in forecasting contractual rents for apartments, random forests have obtained better results (MAE is € 61.57) than with linear regression (MAE is € 81.20), which is better than the null model (MAE is € 95.15). The forecast model includes the state of the market and represents an alternative to the current MGRT evaluation, based on complex evaluation models.
- Published
- 2018