1. Cauchyjeva metoda za izračun integralov
- Author
-
Neumann, Matej and Černe, Miran
- Subjects
Integracija ,udc:517.5 ,Integration ,residue theorem ,izrek o ostankih ,integralska presentacija analitičnih funkcij ,integral representations of analytic functions - Abstract
V matematiki ali fiziki moramo velikokrat izračunati določene integrale. Ker nedoločeni integral pogosto ni izrazljiv z elementranimi funkcijami, je take integrale težko eksaktno izračunati z običajnimi integracijskimi metodami, zato moramo opraviti drugačni pristop. En od možnih pristopov je izračun takih integralov z numeričnimi metodami. Pri integralih, katerih integrandi oscilirajo in posledično njihovi posplošeni integrali konvergirajo zelo počasi, pa pogosto odpovedo tudi standardne numerične metode. Zato se moramo znajti drugače. Drugi je izračun integralov s pomočjo kompleksne analize oziroma izreka o ostankih. Ta pristop bomo v delu podrobno predstavili in obravnavali. Ob tem si bomo pogledali različne pristope dokazovanja konvergence pospološenih integralov in na ta način tudi dodatno odkrili veliko različnih integralov, ki jih bomo s pomočjo te metode znali izračunati povsem natančno. Analizirali bomo tudi različne načine razširitve realne funkcije na kompleksno ravnino, ki nam bodo pomagali prepoznati naš začeten integral kot imaginarni ali realni del nekega integrala kompleksne funkcije. In mathematics or physics we are often tasked with calculating definite integrals, which by itself is a tough task, as most integrals cannot be expressed with elementary functions. We can avoid this problem if we decide to calculate the integral numerically however, if even this fails then we must find another way. One such way is with the help of the residue theorem, which we will cover in this work. We will also consider different ways to prove the convergence of definite integrals and along the way find many different types of integrals, for which we will be able to compute the value immediately. Lastly, we will analyze different ways of extending real functions to the complex plane, which will help us immensely in identifying our starting integral as either the real or the imaginary part of a complex one.
- Published
- 2020