1. Vpliv piruvat dehidrogenaze in signalne poti STING-TBK1 na uravnavanje energijske presnove z AMP aktivirano protein kinazo v skeletnih mišicah
- Author
-
Škorja Milić, Nives and Pirkmajer, Sergej
- Subjects
AMPK ,cGAS-STING-TBK1 signaling pathway ,insulin ,iPSCs-derived skeletal muscle cells ,piruvat dehidrogenaza kinaza ,skeletnomišične celice ,skeletal muscle cells ,2'3'-cGAMP ,rakave celice ,dikloroacetat ,inzulin ,aktivatorji AMPK ,pyruvate dehydrogenase kinase ,AMPK activators ,DMXAA ,signalna pot cGAS-STING-TBK1 ,cancer cells ,dichloroacetate ,iz iPSC-razvite skeletnomišične celice - Abstract
NAMEN: Splošni namen doktorske disertacije je bil preučiti molekularne mehanizme, prek katerih skeletne mišice uravnavajo delovanje z AMP-aktivirane protein kinaze (AMPK) v fizioloških in patofizioloških stanjih, katerih posledica je indukcija imunskega odziva. Poleg tega je bil cilj pojasniti tudi molekularne mehanizme, prek katerih farmakološki modulatorji metabolizma vplivajo na AMPK v skeletnih mišicah. Specifični cilji so bili: (1) opredeliti molekularne mehanizme, prek katerih dikloroacetat (DCA) vpliva na piruvat dehidrogenaza kinazo 1 (PDK1) in AMPK v presnovno različnih tipih celic (2) raziskati, kako aktivacija signalne poti STING-TBK1 vpliva na presnovni status celic in delovanje AMPK in (3) preučiti vlogo AMPK pri vplivu signalne poti STING-TBK1 na delovanje inzulina v skeletnomišičnih celicah. HIPOTEZE: Preverili smo tri hipoteze: (1) Dikloroacetat zniža raven kinaze piruvat dehidrogenaze in spodbudi aktivacijo AMPK v skeletnomišičnih celicah. (2) Signalna pot STING-TBK1 zavira delovanje AMPK v skeletnomišičnih celicah. (3) Farmakološka aktivacija AMPK zmanjša s TBK1 spodbujeno inzulinsko rezistenco v skeletnomišičnih celicah. METODE: Za raziskovanje molekularnih procesov povezanih s presnovnimi odzivi smo uporabili in vitro modele skeletne mišice (primarne (hSkMC) in iz induciranih pluripotentnih matičnih celic (iPSC)-razvite človeške skeletnomišične celice (id-SkMC) ter podganje (L6) skeletnomišične celice). Diferenciacijo skeletnomišičnih celic, razvitih iz iPSC, smo spremljali z RT-qPCR, imunofluorescenco in odtisom western. Za preučevanje odziva tarčnih proteinov in analizo celične signalizacije smo uporabili molekularnobiološke metode (odtis western, RT-qPCR, gensko utišanje z metodo siRNA, ELISA in Magnetic Luminex test za analizo citokinov). Vpliv farmakoloških učinkovin na presnovne procese smo določali s pomočjo analize tvorbe laktata in privzema glukoze. REZULTATI: Ad H1: Napačno delovanje PDK je povezano s presnovnimi motnjami, sladkorno boleznijo tipa 2, debelostjo in rakom. Neposredno z inhibicijo delovanja PDK in posredno z zaviranjem transkripcije gena za PDK1, DCA spodbuja delovanje kompleksa piruvat dehidrogenaze (PDC) in izboljša presnovno homeostazo. Tretiranje z DCA je povzročilo selektiven upad proteina PDK1 v presnovno različnih tipih celic, kar ni bilo povsem odvisno le od regulacije transkripcije. Pri dodatnih posttranskripcijskih mehanizmih, prek katerih je DCA deloval, AMPK ni imela bistvene vloge. Ad H2: Debelost in sladkorna bolezen tipa 2 sta povezana s kroničnim vnetjem. V adipocitih lahko pride do indukcije vnetja tudi zato, ker debelost spodbuja sprostitev mitohondrijske DNA v citosol in posledično aktivacijo signalne poti cGAS-STING-TBK1. V človeških skeletnomišičnih celicah in cevčicah L6 smo signalno pot STING-TBK1 aktivirali z eksogenim 2'3'-cGAMP oziroma z aktivatorjem proteina STING, DMXAA. Aktivacija signalne poti STING-TBK1 je povzročila povečanje aktivnosti AMPK. Ad H3: Z debelostjo povezano kronično vnetno stanje prispeva k razvoju inzulinske rezistence. cGAMP in TBK1 spodbudita aktivacijo protein kinaze B (Akt), ki je glavna kinaza v inzulinski signalni poti. 2'3'-cGAMP je v človeških skeletnomišičnih celicah razvitih iz iPSC stimuliral aktivacijo Akt, DMXAA pa je v cevčicah L6 zavirala z inzulinom spodbujeno aktivacijo Akt in privzem glukoze. Aktivacija AMPK z AICAR je dodatno povečala, medtem ko je posredna inhibicija AMPK s STO-609 preprečila s TBK1-posredovane učinke. ZAKLJUČKI: (1) DCA selektivno zmanjša raven proteina PDK1 in PDK2 ter inducira aktivacijo AMPK v cevčicah L6, kar potrjuje našo prvo hipotezo. (2) Skeletnomišične celice imajo funkcionalno signalno pot cGAS-STING-TBK1, katere aktivacija spodbudi delovanje AMPK, kar ne podpira druge hipoteze. (3) Čeprav 2'3'-cGAMP in DMXAA različno vplivata na inzulinsko signalno pot, je funkcionalna AMPK bistvena za učinke navzdol od TBK1 v skeletnomišičnih celicah. Farmakološka aktivacija AMPK okrepi učinke, posredovane s TBK1, kar ne podpira tretje hipoteze. AIMS: General purpose of doctoral dissertation was to study molecular mechanisms that regulate AMP-activated protein kinase (AMPK) activity in skeletal muscles in physiological and pathophysiological conditions related to induction of immune response. Also, the aim was to elucidate molecular mechanisms by which pharmacological modulators of metabolism affect AMPK in skeletal muscles. Specific aims of doctoral thesis were: (1) to determine molecular mechanisms through which dichloroacetate (DCA) affects pyruvate dehydrogenase kinase 1 (PDK1) and AMPK in metabolically different cell types (2) to investigate how the activation of STING-TBK1 signaling pathway affects cell’s metabolic status and AMPK activity, and (3) to examine the role of AMPK in the effect of STING-TBK1 signaling pathway on insulin action in skeletal muscle cells. HYPOTHESES: We tested three hypotheses: (1) Dichloroacetate decreases pyruvate dehydrogenase kinase level and induces the activation of AMPK in skeletal muscle cells. (2) STING-TBK1 signaling pathway suppresses AMPK activity in skeletal muscle cells. (3) Pharmacologic activation of AMPK decreases TBK1-induced insulin resistance in skeletal muscle cells. METHODS: In vitro models of the skeletal muscle (primary human skeletal muscle cells (hSkMCs), induced pluripotent stem cells (iPSCs)-derived human skeletal muscle cells (id-SkMCs), and rat (L6) skeletal muscle cells) were used to investigate molecular processes associated with metabolic responses. The differentiation of skeletal muscle cells developed from iPSCs was monitored with RT-qPCR, immunofluorescence and western blot. In order to study target protein response and cell signalization, we used molecular methods (western blot, RT-qPCR, gene silencing with siRNA, ELISA and Magnetic Luminex Assay). Effects of pharmacological agents on metabolic processes were determined by analysis of lactate production and glucose uptake. RESULTS: Ad H1: Dysfunction of PDK is associated with metabolic disorders, type 2 diabetes, obesity and cancer. By directly inhibiting PDK and indirectly suppressing PDK gene transcription, dichloroacetate (DCA) promotes the activity of pyruvate dehydrogenase complex (PDC) and improves metabolic homeostasis. Treatment with DCA selectively decreased PDK1 protein abundance in metabolically different cell types, which was partially independent of the regulation at the transcription level. Activated AMPK was not required for additional post-transcriptional mechanisms underlying DCA action. Ad H2: Obesity and type 2 diabetes are associated with chronic inflammation. In adipocytes, the inflammation is likely to develop, also, because obesity promotes release of mitochondrial DNA into the cytosol and, consequently, the activation of the cGAS-STING-TBK1 signaling pathway. In human SkMCs and L6 myotubes the activation of STING-TBK1 was induced with exogenous 2'3'-cGAMP or with STING activator DMXAA, respectively. STING-TBK1 activation increased AMPK activity. Ad H3: Obesity-related chronic inflammation contributes to the development of insulin resistance. cGAMP and TBK1 promote the activity of protein kinase B (Akt), the major kinase within the insulin signaling pathway. Treatment of id-SkMCs with 2'3'-cGAMP increased Akt activity, while DMXAA suppressed insulin-induced Akt activity and glucose uptake in L6 myotubes. AMPK activator AICAR further enhanced, whereas indirect inhibition of AMPK activity with STO-609 prevented TBK1-mediated effects. CONCLUSIONS: (1) DCA selectively decreases PDK1 and PDK2 protein levels and induces the activation of AMPK in L6 myotubes, which supports our first hypothesis. (2) Skeletal muscle cells have functional cGAS-STING-TBK1 signaling pathway which promotes AMPK activity, which does not support the second hypothesis. (3) 2'3'-cGAMP and DMXAA exhibit divergent effects on insulin signaling, but functional AMPK is required for TBK1 downstream effects in skeletal muscle cells. The pharmacologic activation of AMPK further enhances TBK1-mediated effects, which does not support the third hypothesis.
- Published
- 2023