1. Metodología operativa para la obtención de datos históricos de precipitación a partir de la misión satelital Tropical Rainfall Measuring Mission: validación de resultados con datos de pluviómetros
- Author
-
Juan Ignacio Pastore, Andres Lighezzolo, Anabella Ferral, Javier Uranga, Sebastian Gavilan, and Pablo Gilberto Aceñolaza
- Subjects
Hidrología ,Rain gauge ,Meteorología ,Building and Construction ,Tropical rainfall ,Lluvias ,Climatology ,Environmental science ,Satellite ,Arroyo Las Conchas (Entre Ríos, Argentina) ,Precipitation ,Ciencias Agrarias ,Google Earth Engine ,TRMM - Abstract
La información de precipitación es crítica para la comprensión del equilibrio hidrológico a escala global. La lluvia, junto con otras variables ambientales tales como evapotranspiración, temperatura, humedad relativa, entre otras, representa un factor de interés para la producción agrícola. Debido a esto, surge la necesidad de llevar adelante estudios que posibiliten comprender mejor la variabilidad espacial y temporal de las mismas. En este trabajo se presenta una metodología que permite automatizar la descarga de series temporales de datos de precipitación de la Misión de Medición de la Lluvia Tropical (Tropical Rainfall Measuring Mission (TRMM)) desde la plataforma Google Earth Engine (GEE) y validar los datos obtenidos con una serie de datos históricos de una estación meteorológica. Con este fin se desarrolló un sistema bajo la plataforma GEE para la generación y descarga de datos TRMM. Como caso de estudio se fijó la cuenca del Arroyo Las Conchas de la Provincia de Entre Ríos, Argentina. Para la validación de los resultados, se generó un set de datos con la información de precipitaciones desde el 1 de enero del 2000 al 31 de diciembre del 2015, medida por pluviómetros, para el área de influencia de la estación meteorológica de la Estación Experimental Agropecuaria del INTA de Oro Verde, departamento de Paraná, provincia de Entre Ríos, Argentina. Los resultados obtenidos mediante el proceso de evaluación muestran que existe una estrecha relación entre ambas fuentes de información. La metodología propuesta permitirá generar sets de datos históricos de precipitación para estudiar el régimen hídrico en regiones de difícil acceso o en cuencas extensas y poco pobladas., Precipitation information is critical for understanding the hydrological equilibrium on a global scale. Rain, with other conditions, represents a factor of interest for agricultural production. Therefore, the need of carrying out studies that make possible to understand spatial and temporal variability of rain becomes evident. This paper presents a methodology that allows the automatic downloading of time series of precipitation data from the Tropical Rainfall Measurement Mission (TRMM) from the Google Earth Engine (GEE) platform and validate it with a series of meteorological data. The system was developed under the GEE platform for downloading the TRMM data. As a case of study, the Arroyo Las Conchas basin in the Entre Ríos province, in Argentina was established. To validate the results, a set of data was generated with rainfall information in 16 year period, by measuring the rain gauges for the area of influence at the meteorological station in the Instituto Nacional de Tecnología Agropecuaria (INTA) Station at Oro Verde, Paraná, Entre Ríos, Argentina. The results through the evaluation process show a close relationship between both sources of information. The proposed methodology will allow generating sets of historical rainfall data to study the hydrological regime of the Las Conchas Stream basin., Facultad de Ciencias Agrarias y Forestales
- Published
- 2019