Tesis doctoral presentada en el Departamento de Energía de la Universidad de Oviedo, 2016., [EN] Lithium-ion batteries are the most attractive and feasible alternative for the development of massive electrical energy storage systems to allow the implementation of renewable energy sources as well as the electric vehicle. Nevertheless, it is necessary to identify new eco-friendly electrode materials (active materials, conductive additives and binders) capable of improving the performance of the batteries without increasing the cost. Therefore, the Main Objective of this Thesis is to develop efficient anodes for lithium-ion batteries which increase the energy and power as well as the useful life of these devices, reducing the environmental impact associated with their manufacture, use and subsequent recycling. To achieve this goal, the work is organized in three activities that are related to the Specific Objectives set out. In a first activity, graphitic nanomaterials (graphite nanofibers) were prepared by heat treatment at high temperatures of carbon nanofibers produced in the catalytic decomposition of biogas, a renewable energy source. Graphite nanofibers with a highly-developed three-dimensional structure were used as anode active material for lithium-ion batteries. The electrochemical performance of these nanomaterials is comparable, or even superior at high-density currents, to that of oil-derived micrometric graphite, which is used on a large scale for lithium-ion batteries. The nanometric particle size reduces the diffusion time of the Li+ ions along the intercalation/deintercalation processes, allowing faster charge/discharge rates, thus making these graphite nanofibers potential candidates for anodes of high-power lithium-ion batteries. Afterwards, a series of hydrocolloids, more specifically, natural, safe and biodegradable biopolymers, among them sodium carboxymethyl cellulose, sodium alginate, xanthan gum and guar gum, were employed as an alternative to polyvinylidene difluoride, synthetic fluorinated polymer commonly used as binder in anodes for lithium-ion batteries. From the electrochemical studies at different current rates and binder concentrations it can be concluded that the electrochemical performance of the synthetic graphite anodes with hydrocolloids with a linear structure or with the fluorinated polymer are comparable, proving the viability of the named for this application. Furthermore, the required amount of hydrocolloid for a proper electrode performance is smaller, which together with their lower prices and the possibility of using water instead of an organic solvent, would reduce costs as well as the environmental impact caused by these devices.