Mercado Mercado, G., López Teros, V., Montalvo González, E., González Aguilar, G. A., Álvarez Parrilla, E., and Sáyago Ayerdi, S. G.
Introduction: During the industrial processing of the mango is wasted close to 40 % of by-products (BP, peel and paste). These BP contain carotenoids that benefit to the consumer's health, such as, the carotenoids. Hence, it is a matter of interest to know if the carotenoids can be bioaccessible. Hence, ultrasound-assisted extraction (UAE) has proven to be a tool to increase their bioaccessibility of diverse bioactive compounds. In this sense, it is proposed to develop beverages where BP were used applying the UAE, evaluating in vitro the bioaccessibility of carotenoids. Method: Four beverages were developed, a control (CB), and three with UAE (B-UAE1: XET: 30 min, XSA: 30 %, XDC: 0.8; B-UAE2: XET: 15 min, XSA: 70 %, XDC: 0.4; B-UAE3: XET: 12 min, XSA: 100 % and XDC: 1). The carotenoids profile was analyzed by HPLC-DAD and in the in vitro bioaccessibility. The kinetics of the release of these compounds was evaluated in the gastric digestion (GD) and intestinal (ID), as well as, its retention in the soluble indigestible fraction (SIF) and insoluble indigestible fraction (IIF). In this way, it was determined the percentage of bioaccessibility (%BA) of carotenoids. Finally, it was determined the release kinetics during 180 min, estimating the kinetic parameters (final velocity and constant kinetic). Results: The carotenoids content were ranged from 0.01 to 3.29 μg/100 mL in the mango beverages. The xanthophylls showed significant differences in all beverages with UAE in the ID. The UAE had a negative effect on the β-cryptoxanthin, lutein, and β-carotene content in B-UAE2 and B-UAE3. On the other hand, the α-carotene content was similar in all beverages. During ID, the α-carotene and β-carotene content were higher in CB and lutein and zeaxanthin contents were higher in the B-UAE1. The %BA of lutein, zeaxanthin (Zea), α-carotene and β-carotene in the BUAE1 was 95.63, 56.88, 65.20, and 90.54%, respectively. Therefore, βCr and Zea were the most not bioaccessible in BC and B-EAU3, respectively. The B-UAE1 presented a greater rate of release of β-cryptoxanthin, lutein and β-carotene. Discussion or Conclusion: UAE caused a decrease in the carotenoids content due to isomerization reactions. The release of the xanthophylls and carotenes can be due to components of the food matrix, interactions of the carotenoids with other compounds, and the preparation of beverages. However, the UAE favors the release of these compounds. On the other hand, the presence of carotenoids in the SIF and IIF was due to dietary fiber of the peel, and the xanthan gum. In this way, UAE contributes to increase the %BA of carotenoids. Therefore, the release kinetic parameters show that there are diverse factors that influence this phenomenon such as the synergistic or antagonistic action between the carotenoids and other components. [ABSTRACT FROM AUTHOR]