Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2015, Thesis (M.Sc.) -- İstanbul Technical University, Instıtute of Science and Technology, 2015, Yere Nüfuz Eden Radar (YNR, Ground Penetrating Radar (GPR)) yerin altını görüntülemek için kullanılan önemli bir teknolojidir. YNR sisteminde; kontrol ünitesinde darbe üreteciyle üretilen elektromanyetik işaret, verici anten vasıtasıyla yerin altına gönderilir, alıcı anten tarafından geri yansıyan işaretler toplanır ve toplanan işaretler sinyal işleme algoritmalarıyla işlenerek görüntüleme ekranında gösterilir. YNR teknolojisi tünel araştırmaları, maden araştırmaları, şehir alt yapılarının araştırılması, yer altındaki kablo ve boruların tespit edilmesi, arkeolojik araştırmalar, asfalt kontrol araştırmaları ve askeri alan araştırmaları gibi bir çok araştırma alanında kullanılmaktadır ve YNR sisteminin yazılımsal ve donanımsal özellikleri kullanıldığı alana göre farklılık göstermektedir. Bu tez çalışması askeri alanda mayınların tespit edilmesi problemine yönelik bir çalışmadır. Mayınlar ilk olarak metal içeriği fazlasıyla yoğun maddeler kullanılarak üretilmişlerdir fakat metal dedektörlerinin bu mayınları rahatlıkla tespit etmesi üzerine mayınlar metal içeriği çok az olacak ya da hiç metal içermeyecek şekilde plastik madde kullanılarak üretilmişlerdir ve bu mayınların tespit edilmesinde metal dedektörleri başarısız olmuştur. Çözüm olarak YNR sistemleri metal içeriği çok az olan ya da hiç metal içermeyen mayınların tespit edilmesi için kullanılmaya başlamıştır. YNR sistemi metal içeriği çok az olan ya da hiç olmayan mayınların tespit edilmesinde metal dedektörlerine üstünlük sağlasa da bu mayınların YNR sistemi kullanılarak tespit edilmesi hiç de kolay değildir. Kargaşa, özellikle yeryüzüne yakın gömülen, küçük boyutlu ve plastik anti-personel mayınların görüntülenmesini ve tespit edilmesini zorlaştırmaktadır. Kargaşa; alıcı-verici anten arasındaki kuplaj, yeryüzünden geri gelen yansıma ve toprak içerisinde bulunan istenmeyen cisimlerden (ağaç kökleri, ufak taşlar, toprak içerisindeki düzensiz yapılar, vb.) gelen yansımalardan oluşmaktadır. Kargaşa mayınların tespit edilmesini zorlaştırmasının yanında bazı durumlarda toprak içerisinde gömülü cisim olmamasına rağmen ilgili bölgede hedef olduğu algısı oluşturarak yanlış alarmlara sebep olmaktadır. Hedef tespit başarımını arttırmak, yanlış alarm olasılığını azaltmak için kargaşa giderme yöntemleri önem kazanmıştır. Literatürde YNR görüntülerinde kargaşa gidermek için üç farklı yaklaşım mevcuttur. Bu yaklaşımlar kargaşayı modelleyen yöntemler, hedefi modelleyen yöntemler ve veriyi altuzaylara ayrıştıran istatistiksel yöntemlerdir. Kargaşayı modelleyen yöntemler genellikle hedefin olmadığı bölgeden kargaşayı kestirerek tüm veriden kestirilen kargaşayı çıkarmaktadırlar. Kargaşa bu işlem sonucunda giderilerek sadece hedefin olduğu görüntüye ulaşılır. Kargaşayı modelleyen yöntemler hedefin olmadığı bölge bilgisi gerektirmektedir. Hedefi modelleyen yöntemler ise iki aşamadan oluşmaktadır. İlk aşama eğitim aşamasıdır ve bu aşamada çok sayıda hedefe ait veriye ihtiyaç duyulmaktadır. Hedefe ait bu veriler kullanılarak öznitelik çıkarımı yapılmaktadır ve hedef modellenmektedir. İkinci aşama olan test aşamasında şüphelenilen bölgelerde öznitelik çıkarımı yapılarak modellenen hedefe ait referans özniteliklerle karşılaştırılır ve kargaşa hedeften ayırt edilir. Hedefi modelleyen yöntemler genellikle anti-tank mayınlar içindir çünkü anti-tank mayınların YNR imzası modellemeye uygundur. Ayrıca bu yöntemlerin işlem yükü çok fazla olduğu için sadece şüphelenilen bölgeye uygulanması gerekmektedir ve bu yüzden şüpheli bölgeleri belirleyecek yardımcı algoritmalara ihtiyaç duymaktadırlar. Veriyi altuzaylara ayıran istatistiksel yöntemler ise YNR görüntüsünü hedef, kargaşa ve gürültü şeklinde görüntülere ayırarak kargaşa gidermek için kullanılmaktadırlar. Bu yaklaşım içerisinde Tekil Değer Ayrışımı (TDA, Singular Value Decomposition (SVD)), Temel Bileşen Analizi (TBA, Principal Component Analysis (PCA)) ve Bağımsız Bileşen Analizi (BBA, Independent Component Analysis (ICA)) yöntemleri yer almaktadır ve literatürde yaygın olarak YNR görüntülerinde kargaşa gidermek için kullanılmaktadır. Bu yöntemler genellikle birbirleriyle ve kargaşayı modelleyen yöntemlerle karşılaştırılmıştır ve birçok yayında BBA yöntemi diğer yöntemlere üstünlük sağlamaktadır. YNR görüntülerini alt uzaylara ayırarak kargaşa giderme yapan bu yöntemlerin tek dezavantajı hedefe ait bilgileri kargaşa ve gürültüden ayırt ederken hangi bileşenlerin hedefe ait bilgileri içerdiği bilgisinin kesin olarak bilinmemesidir. Bu tez çalışmasında literatürde ilk kez Morfolojik Bileşen Analizi (MBA, Morphological Component Analysis (MCA)) yönteminin YNR görüntülerinde kargaşa gidermek için kullanılması önerilmiştir. MBA yöntemi seyrek işaret işleme alanında önerilen görüntü ayrıştırma yöntemidir ve ilk olarak resim ve doku bileşenlerinin iç içe olduğu görüntüleri doku bileşeni ve resim bileşeni olarak ayrıştırmak için önerilmiştir. MBA yöntemi zamanla bir çok uygulamada kullanılmaya başlamıştır. MBA algoritması görüntüyü farklı bileşenlere ayırırken herbir bileşen için bir sözlüğe ihtiyaç duymaktadır. Sözlük işaret ya da görüntülerden alınan ve yama olarak adlandırılan küçük görüntü parçalarından oluşmaktadır. MBA algoritması, bir bileşenin bir sözlükle seyrek olarak ifade edilirken diğer bir sözlükle seyrek olarak ifade edilemediğini varsaymaktadır ve algoritmanın başarısı bu varsayıma bağlıdır. YNR görüntüleri incelendiğinde kargaşa ve hedefin farklı karakteristiklerde olduğu belirlenmiştir ve uygun sözlükler kullanılarak MBA algoritmasının YNR görüntülerinde kargaşa gidermek için kullanılabileceği düşünülmüştür. MBA algoritması gerçek YNR görüntülerine uygulanarak kargaşa gidermek için uygun ve etkili bir yöntem olduğu gösterilmiştir. Ayrıca MBA algoritması kullanılarak elde edilen sonuç literatürde yaygın olarak kullanılan TDA, TBA ve BBA yöntemleriyle elde edilen kargaşa giderme sonuçlarıyla karşılaştırılmıştır ve MBA algoritması kullanılarak elde edilen kargaşa giderme sonucunun diğer yöntemler kullanılarak elde edilen sonuçlara üstünlük sağladığı gösterilmiştir., Ground Penetrating Radar (GPR) is an important technology that is used for imaging the subsurface. Generally, GPR system consists of a transmitting antenna, a receiving antenna, a control unit and a displaying screen. GPR sends electromagnetic waves to subsurface with the transmitting antenna and reflected signals are collected from the receiving antenna. At the same time, the reflected signals are recorded and then processed with signal processing algorithms and finally processed data are displayed in the screen. GPR has been used in many applications: tunnel linings, geophysical investigations, urban infrastructure investigations, pipes and cable detection, archaeological investigations, road condition survey, military defence applications and so on. Thus, hardware and software properties of GPR varies according to application being used. In this work, GPR is used for military applications: the problem of detection of buried landmines. Detection and removal of landmines is a serious problem affecting civilians and soldiers. It is estimated that about 110 million landmines are buried in 64 countries around the world and that 26,000 people a year are killed or maimed by a landmine. There are two types of landmines: anti-personnel and anti-tank. Anti-personnel landmines are designed for use against humans, as opposed to anti-tank mines which are designed for use against vehicles. Anti-personnel landmines are equipped with casing that protects mine from environment. Early landmines had casing made of steel and aluminium but these mines are easily detected by metal detectors. After the use of metal detectors for landmine detection, mines manufacturers produced new landmines which include minimum metal content. The performance of metal detectors were degraded after the production of these landmines and GPR is started to be used for the detection of landmines with little or no metal content. Although GPR offers the promise of detecting landmines with little or no metal content but landmine detection via GPR has been a difficult problem. It is well known that target detection process in GPR is highly affected by the clutter. Clutter can be caused by breakthrough between the transmitting and receiving antennas, reflection from the ground which is called ground bounce and scattering response from non-mine objects (roots, small rocks, non-uniform terrain and so on). Since the targets are buried near the surface which are consists of minimum metal contents, clutter suppresses target signal because amplitude of reflected signal from the target is weaker than ground bounce. Briefly, clutter prevents to detect landmines and cause false alarms in the non-target region. In addition, the performance of GPR system is affected from soil conditions, temperature, weather conditions and varying terrain. Clutter reduction techniques has gained importance to achieve high detection rates and to decrease false alarm probabilities. In GPR system, the reflected signal is composed of clutter, target and system noise. As the system noise has less importance compared to the other components, clutter reduction algorithms aim to decompose the reflected signal as target and clutter. There are three different approaches to remove clutter in the literature. These techniques are based on modeling the clutter or the target and subspace based statistical methods. In the first approach, clutter or background model is estimated from non-target region and this estimated clutter is subtracted from all GPR image. At the end of this process clutter is removed from GPR image and the image includes only target information. Background (Mean) Subtraction (BS), Median Subtraction (MS), Moving Background Subtraction (MBS), Moving Median Subtraction (MMS), Kalman, Wavelet and Likelihood Ratio Test (LRT) are methods which models clutter. This approach needs information about target-free region and the performance of these methods degrade with varying terrain conditions. In the second approach, target is modeled and then searched in the GPR image. This approach consists of the training and the test stages. Training stage requires too many target data which are taken from different soil conditions, different terrain, large variety of landmine types. After the collection of target data, feature extraction process is applied to these target data. Extracted features are trained with learning algorithms and targets are modelled. In the test stage, feature extraction process is applied to suspicious region in the GPR data and extracted features are compared to target model. After the comparison, the algorithm decides whether the observed region contains target or not, so clutter is separated from target. Especially, this approach is appropriate for anti-tank landmines because GPR signature of anti-tank landmines are suitable for modeling. Polynomial fitting, Histograms of Oriented Gradients (HOG), Hidden Markov Models (HMM), Edge Histogram Descriptors (EHD) are algorithm which are use this approach. In addition, these methods' computational burden is very high so these methods are applied only to suspicious regions to separate target from clutter and also need auxilary algorithms to specify suspicious regions. Subspace based statistical methods are the third approach that are widely used methods in literature for clutter reduction in GPR data. In this approach, GPR data is decomposed into sub images corresponding to clutter, target and background components. Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Independent Component Analysis (ICA) are used for clutter reduction in this approach. Since in GPR the clutter is much stronger than the target component, it can be reconstructed by the use of the eigenvector corresponding to the largest eigenvalue of the correlation matrix of the GPR image in SVD method or the first principal component in the PCA based method. Similarly, in ICA based method the components are reconstructed using corresponding independent components. Bell-Sejnowski, Molgedey-Schuster, FASTICA, Joint Approximate Diagonalization of Eigenmatrices (JADE) and Kernel-ICA (KICA) algorithms have been developed to implement the ICA method. In this thesis, JADE and FASTICA algorithms are used to remove clutter from GPR images. There are a lot of publication in literature that compare these subspace methods with each other and other approaches. In general, ICA based methods outperform other methods for clutter reduction in GPR images. It is known that these methods decompose GPR image with selecting components and clutter is reconstructed using the first largest component but it is not known exactly which components includes target information. There are some approaches to calculate which components contain target information but achieved results are not satisfactory and component selection process for the determination of the target component is still an open area of research. In this thesis work, the first time Morphological Component Analysis (MCA) method is proposed for clutter reduction in GPR images. MCA is an image decomposition method based on sparse representations and morphological diversity and it is proposed to decompose images into texture and piecewise smooth (cartoon) parts. The basic idea presented in MCA algorithm is the use of two appropriate dictionaries, one for the representation of textures and the other for the cartoon parts. In sparse signal processing area, dictionary is defined as a set of signals and constructed with one dimensional signals or two dimensional image parts which are extracted from images and called "patch". Each element of dictionary is referred as "atom". There are two types of dictionaries: analytic dictionaries and learning based dictionaries. In analytic based approach, dictionaries are constituted with using analytic functions like cosine, sine. In the learning based dictionaries, patches are extracted from a set of images and these patches are processed via learning algorithm and learning based dictionary is constructed with using learned (processed) patches. MCA assumes that an image is a linear mixture of several morphological components where each of them can be sparsely represented with an appropriate dictionary which is inefficient to represent sparsely the other component. This is a key assumption for the success of the MCA algorithm, so the success of MCA algorithm depends on the selection of the dictionaries. Therefore, choosing a suitable dictionary is an important step with two criteria: i) dictionaries must be mutually incoherent and, ii) dictionaries must represent each related component sparsely. Once the dictionaries are identified, MCA finds the components by successive iterative thresholding. In each iteration of MCA algorithm, each component is represented by the related dictionary and sparse coefficients. Sparse coefficients are calculated to represent each component with related dictionary and then these calculated coefficients are thresholded. MCA uses different thresholding methods and thresholding strategies. Thresholding methods are applied to coefficients while thresholding strategies calculate related threshold in each iteration. GPR images include linear mixture of clutter and target components and separation of these components from each other is challenging. In this study, GPR images are decomposed into clutter and target components by the use of MCA. To successfully decompose GPR image into clutter and target components, suitable dictionaries for each type of image-content must be selected. Before the dictionary selection process, GPR images are investigated and it is observed that clutter components include lines or line-shaped parts and targets produce isotropic structures. It is reported that isotropic structures can be efficiently represented by wavelet dictionaries while for global lines curvelet or ridgelet dictionaries are more appropriate candidates. Thus, the clutter and target components are sparsely represented with curvelet and Undecimated Discrete Wavelet Transform (UDWT) dictionaries, respectively. A new clutter removal method based on MCA is applied to four two dimensional GPR images (B-scans). These four B-scans are obtained by using four different scenarios and each scenario is composed of metal targets and as well as plastic targets with low metal content and is performed with different soil conditions and soil types. Obtained results show that MCA is efficient and appropriate method to remove clutter from GPR images. On the other hand, SVD, PCA and ICA methods are applied to these B-scans for comparison purposes. Obtained results show that MCA outperforms these state-of-the-art clutter removal methods., Yüksek Lisans, M.Sc.