1. Optimizing Bartlett test: a grain yield analysis in soybean
- Author
-
Iris Cristina Datsch Toebe, Marcos Toebe, Anderson Chuquel Mello, Karina Chertok Bittencourt, and Rafael Rodrigues de Souza
- Subjects
planejamento experimental ,analysis of variance ,mathematical assumptions ,Glycine max ,General Veterinary ,análise de variância ,Animal Science and Zoology ,pressuposições matemáticas ,Agronomy and Crop Science ,experimental planning - Abstract
This study analyzed the response of the Bartlett test as a function of sample size and to define the optimal sample size for the test with soybean grain yield data. Six experiments were conducted in a randomized block design with 20 or 30 cultivars and three repetitions. Grain yield was determined per plant, totaling 9,000 sampled plants. Next, sample scenarios of 1, 2, ..., 100 plants were simulated and the optimal sample size was defined via maximum curvature points. The increase in sampled plants per experimental unit favors Bartlett test’s precision. Also, the sampling of 17 to 20 plants per experimental unit is enough to maintain the accuracy of the test. RESUMO: Os objetivos deste estudo foram analisar a resposta do teste de Bartlett em função do tamanho de amostra e definir o tamanho amostral ótimo para o teste com dados de produtividade de grãos de soja. Foram conduzidos seis experimentos em delineamento de blocos ao acaso com 20 ou 30 cultivares e três repetições. A produtividade de grãos foi definida por planta, totalizando 9.000 plantas amostradas. Logo, foram simulados cenários amostrais de 1, 2, ..., 100 plantas e definido o tamanho amostral ótimo via pontos de máxima curvatura. O aumento de plantas amostradas por unidade experimental favorece a precisão do teste de Bartlett. Além disso, a amostragem de 17 a 20 plantas por unidade experimental é suficiente para manter a acurácia do teste.
- Published
- 2023
- Full Text
- View/download PDF