22 results on '"Arnaud Rigacci"'
Search Results
2. Physicochemical properties of Aquivion/fluorine grafted sepiolite electrolyte membranes for use in PEMFC
- Author
-
Sahng Hyuck Woo, Arnaud Rigacci, Annette Mosdale, Christian Beauger, Aurélie Taguet, Belkacem Otazaghine, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Pôle Matériaux Polymères Avancés (Pôle MPA), Centre des Matériaux des Mines d'Alès (C2MA), IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-IMT - MINES ALES (IMT - MINES ALES), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), and PaxiTech SAS
- Subjects
Materials science ,General Chemical Engineering ,Sepiolite nanofiber ,Proton exchange membrane fuel cell ,02 engineering and technology ,Electrolyte ,Conductivity ,010402 general chemistry ,01 natural sciences ,7. Clean energy ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,Fluorination ,Nafion ,Electrochemistry ,medicine ,Aquivion ,Sepiolite ,food and beverages ,Proton exchange membrane fuel cell (PEMFC) ,Perfluorosulfonic acid (PFSA) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Membrane ,chemistry ,Chemical engineering ,Surface modification ,Swelling ,medicine.symptom ,0210 nano-technology - Abstract
International audience; This study proposes a novel sepiolite-based Aquivion electrolyte membrane which could be operated at low relative humidity. In the study, it was discovered that the functionalization of sepiolite with fluorinated groups (i.e., -C7F15), named SEP-F, helps its dispersion in the composite membrane, compared with the use of natural sepiolite. The Aquivion/SEP-F composite membrane showed increased water uptake, thermo-mechanical and chemical stability as well as proton conductivity and decreased swelling compared with commercially available Nafion HP and pristine Aquivion. Their behavior in single cell MEA testing conditions was also assessed. Aquivion/SEP-F composite membrane can be an interesting alternative for low relative humidity operation of PEMFC (proton exchange membrane fuel cell).
- Published
- 2019
- Full Text
- View/download PDF
3. Influence of Sepiolite and Halloysite Nanoclay Additives on the Water Uptake and Swelling of Nafion Based Composite Membranes for PEMFC: Impact of the Blending Time on Composite Homogeneity
- Author
-
Sahng Hyuck Woo, Christian Beauger, and Arnaud Rigacci
- Subjects
010405 organic chemistry ,Chemistry ,Sepiolite ,Composite number ,Proton exchange membrane fuel cell ,General Chemistry ,engineering.material ,010402 general chemistry ,01 natural sciences ,Halloysite ,0104 chemical sciences ,chemistry.chemical_compound ,Chemical engineering ,Nanofiber ,Nafion ,Homogeneity (physics) ,engineering ,medicine ,Swelling ,medicine.symptom - Abstract
This study introduces the relationship between physicochemical properties and blending time for two different clays, sepiolite nanofibers (SEP) and halloysite nanotubes (HNT) inside a Nafion matrix...
- Published
- 2019
- Full Text
- View/download PDF
4. Superinsulating composite aerogels from polymethylsilsesquioxane and kapok fibers
- Author
-
Aravind Parakkulam Ramaswamy, Arnaud Rigacci, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Thermal properties ,Materials science ,Methyltrimethoxysilane ,Composite number ,Mechanical properties ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,[SPI]Engineering Sciences [physics] ,chemistry.chemical_compound ,Sessile drop technique ,Thermal conductivity ,Flexural strength ,General Materials Science ,Composite material ,Composites ,Aerogels ,Aerogel ,Sorption ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Materials for energy ,0104 chemical sciences ,chemistry ,Natural fibers ,0210 nano-technology ,Mesoporous material - Abstract
International audience; A facile method to synthesize light weight thermally superinsulating composite aerogel is being presented here. A polymethylsilsesquioxane (PMSQ) – cellulose composite aerogel starting from a trifunctional precursor viz. methyltrimethoxysilane (MTMS) and kapok fibers have been synthesized. Kapok fibers have been employed as they have a homogeneous hollow structure and also possess intrinsic low density. A PMSQ-Kapok composite aerogel with a density as low as 0.053 gcm−3 with a thermal conductivity of 0.018 W m−1 K−1 in room conditions has been synthesized. Besides, a flexural strength (at maximum stress) of 108 kPa ± 21 has been obtained through three points bending test. All the composite aerogels are mesoporous as characterized by N2 sorption isotherms and hydrophobic as shown by sessile drop experiments. On comparison with the earlier reported works and with some of the commercially available aerogel composites, the current results seem promising. For demonstrating the real application purpose, thin composite aerogel sheets have also been synthesized which could be easily rolled/bended.
- Published
- 2021
- Full Text
- View/download PDF
5. Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials
- Author
-
Margot Alves, Georg Pour, Tatiana Budtova, Arnaud Rigacci, Cyrielle Rudaz, Hébert Sallée, Gudrun Reichenauer, and Arnaud Demilecamps
- Subjects
chemistry.chemical_classification ,Materials science ,Aerogel ,02 engineering and technology ,Polymer ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,chemistry.chemical_compound ,Thermal conductivity ,chemistry ,Bacterial cellulose ,Specific surface area ,Thermal ,Surface modification ,Cellulose ,Composite material ,0210 nano-technology - Abstract
Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.
- Published
- 2018
- Full Text
- View/download PDF
6. Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin
- Author
-
Lukas Huber, Shanyu Zhao, Yucheng Zhang, Samuel Brunner, Arnaud Demilecamps, Arnaud Rigacci, Philippe Tingaut, Tatiana Budtova, Wim J. Malfait, Matthias M. Koebel, Swiss Federal Laboratories for Materials Science and Technology [Dübendorf] (EMPA), Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Swiss Federal Laboratories for Materials Testing and Research, and Swiss Federal Laboratories for Materials Science and Technology [Thun] (EMPA)
- Subjects
food.ingredient ,Materials science ,Pectin ,02 engineering and technology ,engineering.material ,01 natural sciences ,Catalysis ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,[SPI]Engineering Sciences [physics] ,food ,Brittleness ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,Thermal insulation ,Polymer chemistry ,Silicic acid ,Hybrid-Aerogele ,Polysaccharide ,Nanoscopic scale ,ComputingMilieux_MISCELLANEOUS ,Nanocomposite ,business.industry ,010405 organic chemistry ,NMR-Spektroskopie ,Aerogel ,General Chemistry ,General Medicine ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Transmissionselektronenmikroskopie ,Chemical engineering ,chemistry ,engineering ,Biopolymer ,business ,0210 nano-technology - Abstract
International audience; Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica–biopolymer hybrids are a promising alternative. A one-pot process to monolithic, superinsulating pectin–silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed “neck-free” nanoscale network structure with thicker struts. Such a design is superior to “neck-limited”, classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica–biopolymer nanocomposite aerogels.
- Published
- 2015
- Full Text
- View/download PDF
7. Aerogels: a fascinating class of materials with a wide potential of application fields
- Author
-
Tatiana Budtova, Irina Smirnova, Arnaud Rigacci, Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de Mise en Forme des Matériaux (CEMEF), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Technische Universität Hamburg-Harburg (TUHH), and Numerische Strukturanalyse mit Anwendungen in der Schiffstechnik (M-10)
- Subjects
Class (computer programming) ,Materials science ,Event (relativity) ,Nanotechnology ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Data science ,[SPI.MAT]Engineering Sciences [physics]/Materials ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Biomaterials ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,Technical university ,Materials Chemistry ,Ceramics and Composites ,0210 nano-technology - Abstract
International audience; Preface : In September 2016, the “Third International Seminar on Aerogels”, co-organized with the International Society for the Advancement of Supercritical Fluids (ISASF) and Technical University of Hamburg-Harburg (TUHH) was hosted by MINES ParisTech in Sophia Antipolis (Alpes-Maritimes, France). This Special Issue gathers 17 full original articles related to topics and presentations of this event.
- Published
- 2017
- Full Text
- View/download PDF
8. Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting: Nanoparticles, nanotubes and aerogels
- Author
-
Christian Beauger, Jean-François Hochepied, Mourad Benabdesselam, Patrick Achard, Daniela D’Elia, Arnaud Rigacci, Nicolas Keller, J.-C. Valmalette, Valérie Keller-Spitzer, Yoshikazu Suzuki, Marie-Hélène Berger, CEP/Sophia, Centre Énergétique et Procédés (CEP), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), CEP/Paris, Centre des Matériaux (CDM), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire des Matériaux, Surfaces et Procédés pour la Catalyse (LMSPC), Institut de chimie et procédés pour l'énergie, l'environnement et la santé (ICPEES), Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique de la matière condensée (LPMC), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), The authors wish to thank the CARNOT MINES Institute for financing this study., tticd, MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Centre des Matériaux (MAT), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), and Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Anatase ,Carrier separation ,Synergetic effect ,02 engineering and technology ,7. Clean energy ,01 natural sciences ,[SPI.MAT]Engineering Sciences [physics]/Materials ,chemistry.chemical_compound ,Separation process ,TiO2 ,Testing conditions ,Water splitting ,Nanotubes ,Catalysts ,Supported Pt ,Aerogel ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Fuel Technology ,Photocatalysis ,Photo-activities ,Photoactivity ,0210 nano-technology ,Morphology ,Materials science ,Inorganic chemistry ,Energy Engineering and Power Technology ,010402 general chemistry ,Catalysis ,Adsorption ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,TiO ,Morphologies ,Hydrogen evolution ,Platinum ,Oxide minerals ,Cocatalyst ,Renewable Energy, Sustainability and the Environment ,Methanol ,Semiconducting materials ,Aerogels ,0104 chemical sciences ,chemistry ,Titanium dioxide ,Nanoparticles ,Hydrogen - Abstract
International audience; Increasing the activity of a photocatalyst goes through the improvement of both its absorption (light) and adsorption (reactant) properties. For a given semiconducting material, the charge carrier separation is also a very important step. Properly combining chosen phases is one option to improve this separation (example of the commercial P25) and depositing platinum on the surface of the catalyst, another one. In some cases, coupling both may nevertheless lead to a decrease of photoactivity or at least limit the potentiality of the catalyst. A third option, consisting in modifying the morphology of the photoactive phase, has shown very promising results. In this study, we have elaborated, characterized and evaluated the hydrogen evolution potentiality (through methanol assisted water splitting) of different TiO2 morphologies: nanoparticles, nanotubes and aerogels. These materials have shown different behaviours depending on both their composition and morphology. Different types of separation processes have been claimed to account for the observed different photoactivities, with more or less pronounced synergetic effects, due to: the use of Pt as a co-catalyst, the mixture of different TiO2 phases (anatase and TiO2(B) or rutile) and the specific morphology of the samples (nanotubes or aerogels). Among all the tested samples, the TiO2 aerogel supported Pt one exhibited very promising performances, three times as active as P25 supported Pt, which is already much more active than pure P25 in our testing conditions.
- Published
- 2011
- Full Text
- View/download PDF
9. Effect of the silica texture on grafting metallocene catalysts
- Author
-
Cristiane F. Petry, Fernando Lang da Silveira, Dirce Pozebon, Arnaud Rigacci, João Henrique Zimnoch dos Santos, Fernanda Chiarello Stedile, Gilvan P. Pires, Instituto de Ingeniería Eléctrica, Universidad de la República [Montevideo] (UCUR), EDF (EDF), Instituto de Química (UFRGS), Instituto de Quimica, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
chemistry.chemical_classification ,Process Chemistry and Technology ,Methylaluminoxane ,Aerogel ,02 engineering and technology ,Polymer ,Polyethylene ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Rutherford backscattering spectrometry ,01 natural sciences ,Catalysis ,[SPI.MAT]Engineering Sciences [physics]/Materials ,0104 chemical sciences ,Gel permeation chromatography ,chemistry.chemical_compound ,Differential scanning calorimetry ,chemistry ,Polymerization ,Chemical engineering ,Polymer chemistry ,Physical and Theoretical Chemistry ,0210 nano-technology - Abstract
A series of hybrid supported catalysts was prepared by sequentially grafting Cp 2 ZrCl 2 and ( n BuCp) 2 ZrCl 2 (1:3 ratio) onto synthesized xerogel, aerogel and commercial silicas. Supports and catalysts were characterized by Rutherford backscattering spectrometry, energy-dispersive X-ray scanning electron microscopy, atomic force microscopy and nitrogen adsorption. Grafted metal content laid between 0.15 and 0.5 wt.% Zr/SiO 2 . All the systems were shown to be active in ethylene polymerization with methylaluminoxane as the co-catalyst. Catalyst activity and molecular weight were shown to depend on the textural characteristic of the silicas, namely grain size and pore diameter. The highest activity in ethylene polymerization (ca. 5310 kg PE mol Zr −1 h −1 ) was obtained with the supported catalyst using commercial silicas with average particle size around 50 μm. Particles with sizes of 80–90 μm obtained less activity. Resulting polymers were characterized by gel permeation chromatography and differential scanning calorimetry.
- Published
- 2007
- Full Text
- View/download PDF
10. A New ESIPT Fluorescent Dye-Doped Silica Aerogel
- Author
-
Valter Stefani, Arnaud Rigacci, Fabiano Severo Rodembusch, and Leandra Franciscato Campo
- Subjects
Materials science ,Polymers and Plastics ,Silica gel ,Organic Chemistry ,Aerogel ,Benzoxazole ,Condensed Matter Physics ,Photochemistry ,Fluorescence ,Isocyanate ,Supercritical fluid ,chemistry.chemical_compound ,chemistry ,Materials Chemistry ,Dye doped ,Visible spectrum - Abstract
A silyl-functionalized benzazole dye, fluorescent by excited state intramolecular proton transfer (ESIPT) mechanism, was synthesized by reacting 2-(2'-hydroxyphenyl)benzoxazole with 3-(triethoxysilyl)propyl isocyanate. The fluorescent silica gel was prepared by the addition of a solution of 2-propanol and the fluorescent dye after the gelation time. The monolithic aerogel was obtained via supercritical CO 2 drying of the fluorescent gel. The resulting aerogel is transparent in the visible light and fluorescent in the blue-green region under UV radiation.
- Published
- 2005
- Full Text
- View/download PDF
11. Improvement of the silica aerogel strengthening process for scaling-up monolithic tile production
- Author
-
Françoise Ehrburger-Dolle, Mari-Ann Einarsrud, Bruno Chevalier, René Pirard, Arnaud Rigacci, and Elin Nilsen
- Subjects
Materials science ,Silica gel ,Supercritical drying ,Mineralogy ,Aerogel ,Condensed Matter Physics ,Electronic, Optical and Magnetic Materials ,Catalysis ,chemistry.chemical_compound ,Cracking ,chemistry ,Chemical engineering ,Permeability (electromagnetism) ,visual_art ,Materials Chemistry ,Ceramics and Composites ,visual_art.visual_art_medium ,Tile ,Scaling - Abstract
Previously published results have shown that washing and aging treatments (respectively in water/ethanol and water/polyethoxydisiloxane solutions) of silica gels (synthesized from polyethoxydisiloxane precursors through HF catalysis) significantly enhance both the permeability and mechanical properties of the wet gels. Unfortunately, scaling-up the process induces severe cracks during supercritical drying. This phenomenon has been related to a pore-size distribution gradient between the surface and the bulk of the gel that appears after aging of thick gels. We report efforts to optimize the aging step. Aging in less-concentrated polyethoxydisiloxane solutions yields gels with a more homogeneous pore-size distribution and has enabled us to obtain large monolithic and crack-free aerogels that remain light and transparent.
- Published
- 2004
- Full Text
- View/download PDF
12. Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry
- Author
-
Patrick Achard, Bruno Chevalier, D. Quenard, Arnaud Rigacci, Jacqueline Marechal, Jean-Paul Pirard, René Pirard, Laboratoire de Génie Chimique, Université de Liège, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), and Centre Scientifique et Technique du Bâtiment (CSTB)
- Subjects
Materials science ,Polymers and Plastics ,Mineralogy ,chemistry.chemical_element ,02 engineering and technology ,Dried gels ,010402 general chemistry ,01 natural sciences ,Mercury porosimetry ,Porous texture ,Materials Chemistry ,Washburn's equation ,Porosity ,Nanoporous ,Supercritical drying ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,Organic Chemistry ,Aerogel ,Porosimetry ,021001 nanoscience & nanotechnology ,Supercritical fluid ,0104 chemical sciences ,Mercury (element) ,Chemical engineering ,chemistry ,0210 nano-technology - Abstract
International audience; Evaporative drying of polyurethane-based gels produces xerogels. Supercritical drying after replacement of interstitial liquid by supercritical CO2 produces aerogels. SEM micrographs show that both materials are made up of small size particles gathered up in filament-shaped, strongly cross-linked aggregates. Density measurements show that they both have a large pore volume. When submitted to mercury porosimetry, the behavior of these materials is similar to that of inorganic aerogels, as previously observed. Mercury does not penetrate the pore network, but the whole material is densified. The usual Washburn equation cannot be used to analyze the mercury porosimetry. A well-suited equation based on a buckling model of filament-shaped aggregates has been developed in order to determine the pore volume distribution of mineral dried gels. This equation is also valid for analyzing the texture of organic hyperporous materials like polyurethane dried nanoporous gel. © 2003 Elsevier Science Ltd. All rights reserved.
- Published
- 2003
- Full Text
- View/download PDF
13. Drying of silica gels to obtain aerogels : phenomenology and basic techniques
- Author
-
Patrick Achard, Didier Lecomte, Antoine Bisson, Elisabeth Rodier, Arnaud Rigacci, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE), Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
- Subjects
Materials science ,Precipitation (chemistry) ,silica gels ,General Chemical Engineering ,Supercritical drying ,supercritical drying ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,evaporative drying ,silica aerogels ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Chemical engineering ,Physical and Theoretical Chemistry ,0210 nano-technology ,Phenomenology (particle physics) ,ComputingMilieux_MISCELLANEOUS ,Sol-gel ,Hydrophobic silica - Abstract
Silica gels form a large family of materials, obtained from more or less complex processes; their elaboration involves several steps that basically include a sol gel transition or a precipitation, ...
- Published
- 2003
- Full Text
- View/download PDF
14. Measurements of comparative apparent thermal conductivity of large monolithic silica aerogels for transparent superinsulation applications
- Author
-
Hébert Sallée, Bruno Ladevie, Olivier Fudym, Bruno Chevalier, Patrick Achard, Arnaud Rigacci, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (RAPSODEE), Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), and Centre Scientifique et Technique du Bâtiment (CSTB)
- Subjects
010302 applied physics ,Superinsulation ,Reproducibility ,Light transmission ,Materials science ,Atmospheric pressure ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,silica aerogels ,02 engineering and technology ,Conductivity ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Supercritical fluid ,Thermal conductivity ,Mechanics of Materials ,0103 physical sciences ,Thermal ,thermal conductivity ,Physical and Theoretical Chemistry ,Composite material ,0210 nano-technology - Abstract
International audience; Large monolithic crack-free transparent silica aerogels were prepared by a patented sol-gel route, and then directly washed and dried with supercritical CO2. In order to characterise as precisely as possible the apparent thermal conductivity of such superinsulating materials, two methods were developed (so-called hot-band and micro-fluxmeter techniques) and the results obtained at room temperature and atmospheric pressure were compared with the standard hot-wire measurements under the same conditions. A reproducibility study showed no large deviations between the thermal conductivities obtained by these different techniques. This leads to the conclusion that aerogels prepared in this way present a good thermal and optical compromise (low thermal conductivity, high light transmission, and no significant radiative heat transport component at room temperature) and can be considered as transparent superinsulating materials.
- Published
- 2002
- Full Text
- View/download PDF
15. DLS and SAXS investigations of organic gels and aerogels
- Author
-
Cyrille Rochas, Patrick Achard, Anne-Marie Hecht, Nicolas Pinto, Gerard Pajonk, Sandrine Berthon, Françoise Bley, Erik Geissler, Frédéric Livet, Arnaud Rigacci, Françoise Ehrburger-Dolle, Olivier Barbieri, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Institut de chimie des surfaces et interfaces de Mulhouse (ICSIM), Ecole Nationale Supérieure de Chimie de Mulhouse-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Spectrométrie Physique (LSP), Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de thermodynamique et physico-chimie métallurgiques (LTPCM), Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Grenoble (INPG), Laboratoire d'Application de la Chimie à l'Environnement (LACE), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Gelation ,X ray scattering ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,Catalysis ,Acetone ,Colloid ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,Dynamic light scattering ,Formaldehyde ,Sol-gels ,Materials Chemistry ,Organic chemistry ,Drying ,Sol-gel ,Supercritical fluids ,Chemistry ,Small-angle X-ray scattering ,Agglomeration ,Percolation (solid state) ,Light scattering ,Water ,Aerogel ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,Supercritical fluid ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,Organic solvents ,Solvent ,Aging of materials ,Carbon dioxide ,Chemical engineering ,Alcohols ,Percolation ,Ceramics and Composites ,0210 nano-technology - Abstract
6th International Symposium on Aerogels (ISA-6) Albuquerque, New Mexico, October 08-11, 2000; International audience; Recent investigations have shown that the structure of organic aerogels can be significantly modified by changing the precursors, the solvent and the nature of the catalyst involved in the sol-gel reaction. It is therefore highly desirable to investigate the sol-gel mechanism. For this purpose, dynamic light scattering (DLS) measurements have been performed at different stages of the reaction for base- or acid-catalyzed gelation of resorcinol-formaldehyde (RF) using water or acetone as solvents. The structure of aged gels was investigated by small-angle X-ray scattering (SAXS) and compared to that of the aerogels obtained after exchange of solvent by supercritical CO2 and drying of the aged gels. It is shown that acid-catalyzed gelation of RF in acetone can be described by percolation, which explains that this series of aerogels consists of mass fractal aggregates (Dm = 2.5). The partial collapse of this polymeric gel yielding colloidal particles in the aerogel can be attributed to deswelling in supercritical CO2. DLS indicates that gelation of RF with a base catalyst yields a colloidal gel whose structure remains practically unchanged in the aerogel, as shown by SAXS.
- Published
- 2001
- Full Text
- View/download PDF
16. Cellulosic and Polyurethane Aerogels
- Author
-
Patrick Achard, Arnaud Rigacci, CEP/Sophia, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Aegerter, Michel Andre, Leventis, Nicholas, Koebel, and Matthias M. (Eds.)
- Subjects
Materials science ,Condensation polymer ,Polymer science ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,Cellulose acetate ,0104 chemical sciences ,Dibutyltin dilaurate ,chemistry.chemical_compound ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,chemistry ,Cellulosic ethanol ,Composite material ,0210 nano-technology ,Polyurethane - Abstract
International audience; This chapter focuses on isocyanurate and cellulose-based aerogels. First, it presents the global sol-gel synthetic path by polycondensation. Then, it summarizes all the main results on these two families of organic aerogels. Finally, some of the recent advancements concerning their use for hybridization of silica aerogels are shortly presented. Through a brief description of the basics, together with a short overview of the main properties, this article highlights the huge potential of those two classes of urethane-based aerogels.
- Published
- 2011
- Full Text
- View/download PDF
17. Aerogels for Superinsulation: A Synoptic View
- Author
-
Patrick Achard, Matthias M. Koebel, Arnaud Rigacci, Swiss Federal Laboratories for Materials Testing and Research, Swiss Federal Laboratories for Materials Science and Technology [Thun] (EMPA), CEP/Sophia, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Aegerter, Michel Andre, Leventis, Nicholas, Koebel, and Matthias M. (Eds.)
- Subjects
Superinsulation ,Sustainable development ,Engineering ,Architectural engineering ,business.industry ,Nanostructured materials ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,7. Clean energy ,0104 chemical sciences ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,Thermal insulation ,Potential market ,0210 nano-technology ,business - Abstract
International audience; The present chapter is focused on describing the intimate link which exists between aerogels and thermal superinsulation. For long, this applied field has been considered as the most promising potential market for these nanostructured materials. Most likely this old vision will become reality in the near future.Following a short presentation of the global need for superinsulation together with a closer look at the specific situation in the building sector, we propose within this synopsis a brief analysis of (1) the world's insulation markets, (2) superinsulating aerogel materials and their alternatives, (3) commercial aerogel insulation products available today, and (4) our estimation of their most likely applications worldwide in the future. We conclude this chapter with some first considerations on health, toxicity, and environmental aspects.Based on recent developments in the field, it can be stated that aerogels still offer the greatest potential for nonevacuated superinsulation systems and consequently must be considered as an amazing opportunity for sustainable development. This chapter of the handbook bridges the gap between those dealing with thermal insulation properties of aerogel materials in general (Chap. 21) and the various commercial products described in Part XV.
- Published
- 2011
- Full Text
- View/download PDF
18. Combining silica-based adsorbents and SPME fibers in the extraction of the volatiles of beer: an exploratory study
- Author
-
Tânia Mara Pizzolato, César Luis Biazon, Arnaud Rigacci, João Henrique Zimnoch dos Santos, Rodrigo Brambilla, Instituto de Química (UFRGS), Instituto de Quimica, Centre Énergétique et Procédés (CEP), MINES ParisTech - École nationale supérieure des mines de Paris, and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
Sorbent ,SPME ,Isoamyl acetate ,Solid-phase microextraction ,01 natural sciences ,Biochemistry ,Analytical Chemistry ,Xerogel ,chemistry.chemical_compound ,0404 agricultural biotechnology ,Adsorption ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,Ethyl decanoate ,Solid Phase Microextraction ,Precipitated silica ,Chromatography ,Molecular Structure ,010401 analytical chemistry ,Extraction (chemistry) ,Ethyl hexanoate ,Beer ,Silica ,04 agricultural and veterinary sciences ,Silicon Dioxide ,040401 food science ,0104 chemical sciences ,chemistry ,Volatilization - Abstract
International audience; A series of silica-based materials were employed as sorbents within solid-phase microextraction vials. The aim of the study was to evaluate the effect of an additional phase on the distribution of the volatile and less volatile analytes. The adsorption of six probe molecules, namely isoamyl acetate, ethyl hexanoate (ethyl caproate), phenylethyl alcohol, ethyl octanoate (ethyl caprilate), 2-phenylethyl acetate, and ethyl decanoate, was monitored by detecting the desorbed amount on a DVD-CAR-PDMS fiber from Pilsen beer. The microextraction process involved the presence of different silica-based phases produced via different methods: xerogel produced by hydrolytic and non-hydrolytic routes, aerogel, pyrogenic, and precipitated silica. The resulting data are discussed in correlation with sorbent texture properties (specific area and pore diameter). The modification of silica with alkyl groups also affects the preconcentrated amount of the target molecules in the headspace. The presence of sorbents was shown to affect the analyte signal more than the addition of NaCl or the use of ultrasound.
- Published
- 2008
- Full Text
- View/download PDF
19. Innentitelbild: Strong, Thermally Superinsulating Biopolymer-Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin (Angew. Chem. 48/2015)
- Author
-
Yucheng Zhang, Lukas Huber, Arnaud Rigacci, Shanyu Zhao, Samuel Brunner, Wim J. Malfait, Arnaud Demilecamps, Philippe Tingaut, Matthias M. Koebel, and Tatiana Budtova
- Subjects
chemistry.chemical_classification ,food.ingredient ,Pectin ,Chemistry ,Aerogel ,General Medicine ,engineering.material ,Polysaccharide ,chemistry.chemical_compound ,food ,engineering ,Organic chemistry ,Biopolymer ,Silicic acid - Published
- 2015
- Full Text
- View/download PDF
20. Inside Cover: Strong, Thermally Superinsulating Biopolymer–Silica Aerogel Hybrids by Cogelation of Silicic Acid with Pectin (Angew. Chem. Int. Ed. 48/2015)
- Author
-
Tatiana Budtova, Samuel Brunner, Arnaud Rigacci, Yucheng Zhang, Matthias M. Koebel, Philippe Tingaut, Wim J. Malfait, Arnaud Demilecamps, Lukas Huber, and Shanyu Zhao
- Subjects
food.ingredient ,Pectin ,Chemistry ,Aerogel ,General Chemistry ,Nuclear magnetic resonance spectroscopy ,engineering.material ,Catalysis ,chemistry.chemical_compound ,food ,Transmission electron microscopy ,Polymer chemistry ,engineering ,Cover (algebra) ,Biopolymer ,Silicic acid - Published
- 2015
- Full Text
- View/download PDF
21. The first silica aerogels fluorescent by excited state intramolecular proton transfer mechanism (ESIPT)
- Author
-
Arnaud Rigacci, Leandra Franciscato Campo, Fabiano Severo Rodembusch, and Valter Stefani
- Subjects
Reaction mechanism ,Silica gel ,Aerogel ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Photochemistry ,01 natural sciences ,Isocyanate ,Fluorescence ,Supercritical fluid ,Fluorescence spectroscopy ,0104 chemical sciences ,3. Good health ,chemistry.chemical_compound ,chemistry ,Excited state ,Materials Chemistry ,0210 nano-technology - Abstract
Five silyl-functionalized benzazole dyes, fluorescent by excited state intramolecular proton transfer (ESIPT) mechanism, were synthesized by reaction of amino benzazole derivatives with 3-(triethoxysilyl)propyl isocyanate. Fluorescent silica gels were prepared and monolithic aerogels (d ≈ 0.18 g cm−3) were obtained via supercritical CO2 drying of the fluorescent gel. The photophysical behaviour of the dyes and fluorescent silica aerogels was investigated by UV–vis and steady-state fluorescence spectroscopy.
- Published
- 2005
- Full Text
- View/download PDF
22. Preparation, properties and applications of novel cellulose and cellulose acetate aerogels
- Author
-
Roxane Gavillon, Claudia Hildenbrand, Florent Fischer, Romain SESCOUSSE, Arnaud Rigacci, Sandrine Berthon-Fabry, Tatiana Budtova, Centre de Mise en Forme des Matériaux (CEMEF), MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Centre Énergétique et Procédés (CEP), and Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
- Subjects
cellulose acetate ,ionic liquids ,porosity ,[SPI.ENERG]Engineering Sciences [physics]/domain_spi.energ ,aerogel ,supercritical drying ,Cellulose ,[SPI.MAT]Engineering Sciences [physics]/Materials - Abstract
International audience; Novel various aerogel-like materials were prepared from the biomass, cellulose and cellulose derivatives, either from their solutions or via physical or chemical gelation and drying in CO2 under supercritical conditions. Two classes of materials will be discussed: based on pure cellulose and on cellulose acetate. Pure cellulose highly porous material, Aerocellulose, was made from cellulose dissolved in green solvents, aqueous NaOH or ionic liquids. An overview of the main preparation steps is given, from cellulose dissolution and solution-state properties, to regeneration kinetics, solvent exchange and drying. The porosity of Aerocellulose is higher than 90% with pore sizes from a few tens of nanometers to a few tens of micrometers. The density ranges from 0.06 to 0.3 g/cm3. Aerogels based on cellulose acetate were synthesised by crosslinking cellulose acetate dissolved in acetone with a non-toxic isocyanate as a cross-linker, using different catalysts (dibutyltin dilaurate, a triethylamine and pyridine). Mesoporous nanostructured network was obtained after drying; pore sizes vary from 10 to 30 nm and density from 0.25 to 0.85 cm3/g. Two applications of these new materials are discussed: as thermal insulators and carbons in proton exchange membrane fuel cell.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.