Serre obtained the p-adic limit of the integral Fourier coefficient of modular forms on $SL_2(\mathbb{Z})$ for $p=2,3,5,7$. In this paper, we extend the result of Serre to weakly holomorphic modular forms of half integral weight on $\Gamma_{0}(4N)$ for $N=1,2,4$. A proof is based on linear relations among Fourier coefficients of modular forms of half integral weight. As applications we obtain congruences of Borcherds exponents, congruences of quotient of Eisentein series and congruences of values of $L$-functions at a certain point are also studied. Furthermore, the congruences of the Fourier coefficients of Siegel modular forms on Maass Space are obtained using Ikeda lifting.