1. The Highly Frustrated 5d2 Double Perovskite Doppelgängers, SrLaMgReO6 and SrLaLiOsO6. A Comparison including Isostructural La2LiReO6
- Author
-
Fang Yuan, Christopher R. Wiebe, Paul A. Dube, Corey M. Thompson, Graeme Luke, Zachery W. Cronkwright, John E. Greedan, Joey A. Lussier, and Timothy J. S. Munsie
- Subjects
Spin glass ,Condensed matter physics ,Chemistry ,media_common.quotation_subject ,Frustration ,02 engineering and technology ,021001 nanoscience & nanotechnology ,01 natural sciences ,Heat capacity ,Inorganic Chemistry ,Octahedron ,0103 physical sciences ,Physical and Theoretical Chemistry ,Isostructural ,010306 general physics ,0210 nano-technology ,Ground state ,Spin-½ ,Sign (mathematics) ,media_common - Abstract
The synthesis and characterization of the double perovskite SrLaLiOsO6 is presented. It is isostructural (P21/n) and isoelectronic (5d2) with SrLaMgReO6, which has been reported previously. The cell volumes are the same to within 1.4%: i.e., these perovskites are doppelgangers. In a previous study SrLaMgReO6 showed no sign of spin order to 2 K. New data at lower temperatures disclose a maximum in the dc susceptibility near 1.5 K. As the Curie-Weiss (C-W) temperature (Θ) for this material is -161 K, an enormous frustration index, f ≈ 100, is implied (f = |Θ|/Tord). On the other hand, SrLaLiOsO6 does not follow the C-W law over the investigated susceptibility range, 2-300 K. Fitting with an added temperature independent term (TIP) gives μeff = 1.96 μB, Θ = -102 K, and TIP = 1.01 × 10-3 emu/mol. A clear zero-field-cooled (ZFC), field-cooled (FC) divergence in the dc data occurs at ∼10 K, suggesting a much reduced frustration index, f ≈ 10, relative to SrLaMgReO6. The real part of the ac susceptibility data, χ'max, shows a frequency shift that is consistent with a spin glass ground state according to the Mydosh criterion. Heat capacity data for SrLaLiOsO6 show no sign of a λ peak at 10 K and a linear dependence on temperature below 10 K, also supporting a spin glass ground state. A spin frozen ground state for SrLaMgReO6 could not be established from χ' data due to a much weaker signal. Nonetheless, the 10-fold difference in f between these doppelganger materials is remarkable. It is possible that the enhanced covalency with the oxide ligands for Os6+ relative to Re5+ plays a major role here. Finally, a comparison with isostructural La2LiReO6 (with a much smaller f ≈ 4) is made and a correlation between the frustration level and the sense of the local distortion of the Re(Os)-O octahedron is pointed out.
- Published
- 2021
- Full Text
- View/download PDF