1. Electrode structure effects on the performance of open-cathode proton exchange membrane fuel cells: A multiscale modeling approach
- Author
-
Stephan Strahl, Attila Husar, Alejandro A. Franco, Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya. ACES - Control Avançat de Sistemes d'Energia, European Commission, and Ministerio de Ciencia e Innovación (España)
- Subjects
Informàtica::Automàtica i control [Àrees temàtiques de la UPC] ,PEMFC CATALYST LAYERS ,020209 energy ,Analytical chemistry ,Energy Engineering and Power Technology ,Proton exchange membrane fuel cell ,2-PHASE FLOW ,02 engineering and technology ,Electrolyte ,Electrochemistry ,7. Clean energy ,Open-cathode ,law.invention ,law ,AGING MECHANISMS ,0202 electrical engineering, electronic engineering, information engineering ,Multiscale modeling ,Water transport ,MATHEMATICAL-MODEL ,Temperature control ,TRANSIENT ANALYSIS ,Renewable Energy, Sustainability and the Environment ,Chemistry ,GAS-DIFFUSION LAYER ,POLYMER-ELECTROLYTE ,Sistemes elèctrics de potència -- Control ,Mechanics ,LIQUID WATER TRANSPORT ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,6. Clean water ,Cathode ,Fuel Technology ,23-120-DEGREES-C ,Electrode ,Electrode structure ,PEMFC ,TEMPERATURE-RANGE ,0210 nano-technology ,Polymer electrolyte membrane fuel cell ,Electric power systems -- Control - Abstract
In this paper we present a new dynamic multiscale model of an open-cathode Polymer Electrolyte Membrane Fuel Cell (PEMFC). The model describes two-phase water transport, electrochemistry and thermal management within a framework that combines a Computational Fluid Dynamics (CFD) approach with a micro-structurally-resolved model predicting the water filling dynamics of the electrode pores and the impact of these dynamics on the evolution of the electrochemically active surface area (ECSA). The model allows relating for the first time the cathode electrode structure to the cell voltage transient behavior during experimental changes in fuel cell temperature. The effect of evaporation rates, desorption rates and temperature changes on the performance of four different electrode pore size distributions are explored using steady-state and transient numerical simulations. The results are discussed with respect to water management and temperature control., This work is partially funded by the national project MICINNDPI2011-25649, as well as by the 7th Framework Programme of the European Commission in the context of the Fuel Cells and Hydrogen Joint Undertaking (FCH JU) through the project PUMA-MIND FP7 303419.
- Published
- 2014
- Full Text
- View/download PDF