24 results on '"Gaitskell, R. J."'
Search Results
2. Projected sensitivity of the LUX-ZEPLIN (LZ) experiment to the two-neutrino and neutrinoless double beta decays of $^{134}$Xe
- Author
-
LUX-ZEPLIN, The, Collaboration, Akerib, D. S., Musalhi, A. K. Al, Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araujo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Bauer, D., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Blockinger, G. M., Bodnia, E., Boxer, B., Brew, C. A. J., Bras, P., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chott, N. I., Cole, A., Converse, M. V., Cottle, A., Cox, G., Creaner, O., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Eriksen, S. R., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gokhale, S., van der Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., James, R. S., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kodroff, D., Korley, L., Korolkova, E. V., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, X., Lopes, M. I., Asamar, E. Lopez, Paredes, B. Lopez, Lorenzon, W., Luitz, S., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., McCarthy, M. E., McKinsey, D. N., McLaughlin, J., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Mendoza, J. D. Morales, Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Patton, S., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Piepke, A., Qie, Y., Reichenbacher, J., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stevens, A., Stifter, K., Suerfu, B., Sumner, T. J., Swanson, N., Szydagis, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., To, W. H., Tovey, D. R., Tripathi, M., Tronstad, D. R., Turner, W., Utku, U., Vaitkus, A., Wang, B., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Williams, M., Wolfs, F. L. H., Woodward, D., Wright, C. J., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
Physics - Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
The projected sensitivity of the LUX-ZEPLIN (LZ) experiment to two-neutrino and neutrinoless double beta decay of $^{134}$Xe is presented. LZ is a 10-tonne xenon time projection chamber optimized for the detection of dark matter particles, that is expected to start operating in 2021 at Sanford Underground Research Facility, USA. Its large mass of natural xenon provides an exceptional opportunity to search for the double beta decay of $^{134}$Xe, for which xenon detectors enriched in $^{136}$Xe are less effective. For the two-neutrino decay mode, LZ is predicted to exclude values of the half-life up to 1.7$\times$10$^{24}$ years at 90% confidence level (CL), and has a three-sigma observation potential of 8.7$\times$10$^{23}$ years, approaching the predictions of nuclear models. For the neutrinoless decay mode LZ, is projected to exclude values of the half-life up to 7.3$\times$10$^{24}$ years at 90% CL., Comment: Version accepted for publication in Phys. Rev. C
- Published
- 2021
- Full Text
- View/download PDF
3. Extending light WIMP searches to single scintillation photons in LUX
- Author
-
Akerib, D. S., Alsum, S., Ara��jo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Baxter, A., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Br��s, P., Burdin, S., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chiller, A. A., Chiller, C., Currie, A., Cutter, J. E., de Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edwards, B. N., Faham, C. H., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Gehman, V. M., Genovesi, J., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Grace, E., Gwilliam, C., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazka, K., Khaitan, D., Knoche, R., Korolkova, E. V., Kravitz, S., Kudryavtsev, V. A., Larsen, N. A., Leason, E., Lee, C., Lenardo, B. G., Lesko, K. T., Levy, C., Liao, J., Lin, J., Lindote, A., Lopes, M. I., L��pez-Paredes, B., Manalaysay, A., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., O'Sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Reichhart, L., Riffard, Q., Rischbieter, G. R. C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Stephenson, S., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Vacheret, A., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xu, J., Yazdani, K., Young, S. K., Zhang, C., and Science and Technology Facilities Council (STFC)
- Subjects
BACKGROUNDS ,Photomultiplier ,Physics - Instrumentation and Detectors ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Photon ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,Astronomy & Astrophysics ,01 natural sciences ,7. Clean energy ,High Energy Physics - Experiment ,Physics, Particles & Fields ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,XENON ,Xenon ,WIMP ,0103 physical sciences ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,physics.ins-det ,Physics ,Scintillation ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,chemistry ,Weakly interacting massive particles ,Physical Sciences ,astro-ph.CO ,Neutrino ,Astrophysics - Instrumentation and Methods for Astrophysics ,EMISSION ,Astrophysics - Cosmology and Nongalactic Astrophysics ,astro-ph.IM - Abstract
We present a novel analysis technique for liquid xenon time projection chambers that allows for a lower threshold by relying on events with a prompt scintillation signal consisting of single detected photons. The energy threshold of the LUX dark matter experiment is primarily determined by the smallest scintillation response detectable, which previously required a twofold coincidence signal in its photomultiplier arrays, enforced in data analysis. The technique presented here exploits the double photoelectron emission effect observed in some photomultiplier models at vacuum ultraviolet wavelengths. We demonstrate this analysis using an electron recoil calibration dataset and place new constraints on the spin-independent scattering cross section of weakly interacting massive particles (WIMPs) down to 2.5 GeV / c 2 WIMP mass using the 2013 LUX dataset. This new technique is promising to enhance light WIMP and astrophysical neutrino searches in next-generation liquid xenon experiments.
- Published
- 2020
- Full Text
- View/download PDF
4. Improved modeling of β electronic recoils in liquid xenon using LUX calibration data
- Author
-
The LUX Collaboration, Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Balajthy, J., Baxter, A., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Brás, P., Burdin, S., Byram, D., Carmona-Benitez, M. C., Chan, C., Cutter, J. E., de Viveiros, L., Druszkiewicz, E., Fan, A., Fiorucci, S., Gaitskell, R. J., Ghag, C., Gilchriese, M. G. D., Gwilliam, C., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Korolkova, E. V., Kravits, S., Kudryavtsev, V. A., Leason, E., Lenardo, B. G., Lesko, K. T., Liao, J., Lin, J., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Riffard, Q., Rischbieter, G. R. C., Rhyne, C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Vacheret, A., Velan, V., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xu, J., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,interaction of hadrons ,Physics::Instrumentation and Detectors ,with matter ,Monte Carlo method ,Dark matter ,Extrapolation ,Detector modelling and simulations I (interaction of radiation with matter ,Noble liquid detectors ,chemistry.chemical_element ,Time projection Chambers ,01 natural sciences ,High Energy Physics - Experiment ,Recoil ,Xenon ,Engineering ,0103 physical sciences ,Calibration ,010306 general physics ,Dark Matter detectors ,Instrumentation ,physics.ins-det ,Mathematical Physics ,etc) ,Physics ,Scintillation ,010308 nuclear & particles physics ,hep-ex ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,interaction of photons with matter ,Nuclear & Particles Physics ,Computational physics ,chemistry ,Physical Sciences - Abstract
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $\beta$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction., Comment: 17 Pages, 10 Figures, 2 Tables
- Published
- 2020
- Full Text
- View/download PDF
5. Improved Modeling of $��$ Electronic Recoils in Liquid Xenon Using LUX Calibration Data
- Author
-
The LUX Collaboration, Akerib, D. S., Alsum, S., Ara��jo, H. M., Bai, X., Balajthy, J., Baxter, A., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Boxer, B., Br��s, P., Burdin, S., Byram, D., Carmona-Benitez, M. C., Chan, C., Cutter, J. E., de Viveiros, L., Druszkiewicz, E., Fan, A., Fiorucci, S., Gaitskell, R. J., Ghag, C., Gilchriese, M. G. D., Gwilliam, C., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Korolkova, E. V., Kravits, S., Kudryavtsev, V. A., Leason, E., Lenardo, B. G., Lesko, K. T., Liao, J., Lin, J., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Naylor, A., Nehrkorn, C., Nelson, H. N., Neves, F., Nilima, A., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Riffard, Q., Rischbieter, G. R. C., Rhyne, C., Rossiter, P., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, R., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Vacheret, A., Velan, V., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Woodward, D., Xu, J., and Zhang, C.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) - Abstract
We report here methods and techniques for creating and improving a model that reproduces the scintillation and ionization response of a dual-phase liquid and gaseous xenon time-projection chamber. Starting with the recent release of the Noble Element Simulation Technique (NEST v2.0), electronic recoil data from the $��$ decays of ${}^3$H and ${}^{14}$C in the Large Underground Xenon (LUX) detector were used to tune the model, in addition to external data sets that allow for extrapolation beyond the LUX data-taking conditions. This paper also presents techniques used for modeling complicated temporal and spatial detector pathologies that can adversely affect data using a simplified model framework. The methods outlined in this report show an example of the robust applications possible with NEST v2.0, while also providing the final electronic recoil model and detector parameters that will used in the new analysis package, the LUX Legacy Analysis Monte Carlo Application (LLAMA), for accurate reproduction of the LUX data. As accurate background reproduction is crucial for the success of rare-event searches, such as dark matter direct detection experiments, the techniques outlined here can be used in other single-phase and dual-phase xenon detectors to assist with accurate ER background reproduction., 17 Pages, 10 Figures, 2 Tables
- Published
- 2019
- Full Text
- View/download PDF
6. Projected sensitivity of the LUX-ZEPLIN experiment to the $0������$ decay of $^{136}$Xe
- Author
-
Akerib, D. S., Akerlof, C. W., Alqahtani, A., Alsum, S. K., Anderson, T. J., Angelides, N., Ara��jo, H. M., Armstrong, J. E., Arthurs, M., Bai, X., Balajthy, J., Balashov, S., Bang, J., Baxter, A., Bensinger, J., Bernard, E. P., Bernstein, A., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Boast, K. E., Boxer, B., Br��s, P., Buckley, J. H., Bugaev, V. V., Burdin, S., Busenitz, J. K., Cabrita, R., Carels, C., Carlsmith, D. L., Benitez, M. C. Carmona, Cascella, M., Chan, C., Chott, N. I., Cole, A., Cottle, A., Cutter, J. E., Dahl, C. E., de Viveiros, L., Dobson, J. E. Y., Druszkiewicz, E., Edberg, T. K., Eriksen, S. R., Fan, A., Fiorucci, S., Flaecher, H., Fraser, E. D., Fruth, T., Gaitskell, R. J., Genovesi, J., Ghag, C., Gibson, E., Gilchriese, M. G. D., Gokhale, S., van der Grinten, M. G. D., Hall, C. R., Harrison, A., Haselschwardt, S. J., Hertel, S. A., Hor, J. YK., Horn, M., Huang, D. Q., Ignarra, C. M., Jahangir, O., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kazkaz, K., Khaitan, D., Khazov, A., Khurana, I., Kocher, C. D., Korley, L., Korolkova, E. V., Kras, J., Kraus, H., Kravitz, S., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Leason, E. A., Lee, J., Leonard, D. S., Lesko, K. T., Levy, C., Li, J., Liao, J., Liao, F. T., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Loniewski, C., Lopes, M. I., Paredes, B. L��pez, Lorenzon, W., Luitz, S., Lyle, J. M., Majewski, P. A., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Marzioni, M. F., McKinsey, D. N., McLaughlin, J., Meng, Y., Miller, E. H., Mizrachi, E., Monte, A., Monzani, M. E., Morad, J. A., Morrison, E., Mount, B. J., Murphy, A. St. J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H. N., Neves, F., Nikoleyczik, J. A., Nilima, A., O'Sullivan, K., Olcina, I., Oliver-Mallory, K. C., Pal, S., Palladino, K. J., Palmer, J., Parveen, N., Pease, E. K., Penning, B., Pereira, G., Pushkin, K., Reichenbacher, J., Rhyne, C. A., Riffard, Q., Rischbieter, G. R. C., Rosero, R., Rossiter, P., Rutherford, G., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Schubnell, M., Seymour, D., Shaw, S., Shutt, T. A., Silk, J. J., Silva, C., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Stancu, I., Stevens, A., Stifter, K., Sumner, T. J., Swanson, N., Szydagis, M., Tan, M., Taylor, W. C., Taylor, R., Temples, D. J., Terman, P. A., Tiedt, D. R., Timalsina, M., Tom��s, A., Tripathi, M., Tronstad, D. R., Turner, W., Tvrznikova, L., Utku, U., Vacheret, A., Vaitkus, A., Wang, J. J., Wang, W., Watson, J. R., Webb, R. C., White, R. G., Whitis, T. J., Wolfs, F. L. H., Woodward, D., Xiang, X., Xu, J., Yeh, M., and Zarzhitsky, P.
- Subjects
FOS: Physical sciences ,Nuclear Experiment (nucl-ex) - Abstract
The LUX-ZEPLIN (LZ) experiment will enable a neutrinoless double beta decay search in parallel to the main science goal of discovering dark matter particle interactions. We report the expected LZ sensitivity to $^{136}$Xe neutrinoless double beta decay, taking advantage of the significant ($>$600 kg) $^{136}$Xe mass contained within the active volume of LZ without isotopic enrichment. After 1000 live-days, the median exclusion sensitivity to the half-life of $^{136}$Xe is projected to be 1.06$\times$10$^{26}$ years (90% confidence level), similar to existing constraints. We also report the expected sensitivity of a possible subsequent dedicated exposure using 90% enrichment with $^{136}$Xe at 1.06$\times$10$^{27}$ years., 13 pages, 7 figures, 2 tables, version 2 changes: additional clarifications requested by referee on Sections II.A, III.C, III.E, III.F and IV.B
- Published
- 2019
- Full Text
- View/download PDF
7. Liquid xenon scintillation measurements and pulse shape discrimination in the LUX dark matter detector
- Author
-
The LUX Collaboration, Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Brás, P., Byram, D., Carmona-Benitez, M. C., Chan, C., Currie, A., Cutter, J. E., Davison, T. J. R., Dobi, A., Druszkiewicz, E., Edwards, B. N., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Genovesi, J., Ghag, C., Gilchriese, M. G. D., Hall, C. R., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Knoche, R., Lenardo, B. G., Lesko, K. T., Liao, J., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Nehrkorn, C., Nelson, H. N., Neves, F., O'Sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Utku, U., Uvarov, S., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Xu, J., Yazdani, K., Young, S. K., and Zhang, C.
- Subjects
Physics - Instrumentation and Detectors ,ARGON ,Physics::Instrumentation and Detectors ,Dark matter ,FOS: Physical sciences ,chemistry.chemical_element ,XMASS ,NUCLEAR ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,RECOILS ,01 natural sciences ,Atomic ,Particle detector ,Particle identification ,Physics, Particles & Fields ,Nuclear physics ,LIMITS ,Recoil ,Xenon ,Particle and Plasma Physics ,SEARCH ,0103 physical sciences ,Nuclear ,010306 general physics ,physics.ins-det ,Physics ,Scintillation ,Quantum Physics ,Science & Technology ,010308 nuclear & particles physics ,GAMMA-RAYS ,Molecular ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,KRYPTON ,chemistry ,Weakly interacting massive particles ,Physical Sciences ,Scintillation counter ,Astronomical and Space Sciences - Abstract
Weakly Interacting Massive Particles (WIMPs) are a leading candidate for dark matter and are expected to produce nuclear recoil (NR) events within liquid xenon time-projection chambers. We present a measurement of the scintillation timing characteristics of liquid xenon in the LUX dark matter detector and develop a pulse shape discriminant to be used for particle identification. To accurately measure the timing characteristics, we develop a template-fitting method to reconstruct the detection times of photons. Analyzing calibration data collected during the 2013-16 LUX WIMP search, we provide a new measurement of the singlet-to-triplet scintillation ratio for electron recoils (ER) below 46~keV, and we make a first-ever measurement of the NR singlet-to-triplet ratio at recoil energies below 74~keV. We exploit the difference of the photon time spectra for NR and ER events by using a prompt fraction discrimination parameter, which is optimized using calibration data to have the least number of ER events that occur in a 50\% NR acceptance region. We then demonstrate how this discriminant can be used in conjunction with the charge-to-light discrimination to possibly improve the signal-to-noise ratio for nuclear recoils., 16 pages, 11 figures
- Published
- 2018
- Full Text
- View/download PDF
8. Ultra-Low Energy Calibration of LUX Detector using $^{127}$Xe Electron Capture
- Author
-
LUX Collaboration, Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Brás, P., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Currie, A., Cutter, J. E., Davison, T. J. R., Dobi, A., Druszkiewicz, E., Edwards, B. N., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Genovesi, J., Ghag, C., Gilchriese, M. G. D., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Knoche, R., Larsen, N. A., Lenardo, B. G., Lesko, K. T., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Nehrkorn, C., Nelson, H. N., Neves, F., O'Sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Uvarov, S., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Xu, J., Yazdani, K., Young, S. K., and Zhang, C.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,hep-ex ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,physics.ins-det ,High Energy Physics - Experiment ,astro-ph.IM - Abstract
We report an absolute calibration of the ionization yields($\textit{Q$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $^{127}$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $^{127}$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $\textit{in situ}$ measurements that have been explored in liquid xenon., Comment: 10 pages, 10 figures, 2 tables
- Published
- 2017
9. Position Reconstruction in LUX
- Author
-
LUX Collaboration, Akerib, D. S., Alsum, S., Ara��jo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Br��s, P., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Currie, A., Cutter, J. E., Davison, T. J. R., Dobi, A., Druszkiewicz, E., Edwards, B. N., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Genovesi, J., Ghag, C., Gilchriese, M. G. D., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Knoche, R., Larsen, N. A., Lenardo, B. G., Lesko, K. T., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Nehrkorn, C., Nelson, H. N., Neves, F., O'Sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W. C., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Uvarov, S., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Xu, J., Yazdani, K., Young, S. K., and Zhang, C.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Computational Physics (physics.comp-ph) - Abstract
The $(x, y)$ position reconstruction method used in the analysis of the complete exposure of the Large Underground Xenon (LUX) experiment is presented. The algorithm is based on a statistical test that makes use of an iterative method to recover the photomultiplier tube (PMT) light response directly from the calibration data. The light response functions make use of a two dimensional functional form to account for the photons reflected on the inner walls of the detector. To increase the resolution for small pulses, a photon counting technique was employed to describe the response of the PMTs. The reconstruction was assessed with calibration data including ${}^{\mathrm{83m}}$Kr (releasing a total energy of 41.5 keV) and ${}^{3}$H ($��^-$ with Q = 18.6 keV) decays, and a deuterium-deuterium (D-D) neutron beam (2.45 MeV). In the horizontal plane, the reconstruction has achieved an $(x, y)$ position uncertainty of $��$= 0.82 cm for events of only 200 electroluminescence photons and $��$ = 0.17 cm for 4,000 electroluminescence photons. Such signals are associated with electron recoils of energies $\sim$0.25 keV and $\sim$10 keV, respectively. The reconstructed position of the smallest events with a single electron emitted from the liquid surface has a horizontal $(x, y)$ uncertainty of 2.13 cm., 30 pages, 17 figures
- Published
- 2017
- Full Text
- View/download PDF
10. Tritium calibration of the LUX dark matter experiment
- Author
-
Collaboration, LUX, Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Bradley, A., Bramante, R., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chapman, J. J., Chiller, A. A., Chiller, C., Currie, A., Cutter, J. E., Davison, T. J. R., Viveiros, L. de, Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edwards, B. N., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gehman, V. M., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Ihm, M., Jacobsen, R. G., Ji, W., Kazkaz, K., Khaitan, D., Knoche, R., Larsen, N. A., Lee, C., Lenardo, B. G., Lesko, K. T., Lindote, A., Lopes, M. I., Malling, D. C., Manalaysay, A. G., Mannino, R. L., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, Alex, Nehrkorn, C., Nelson, H. N., Neves, F., O`Sullivan, K., Oliver-Mallory, K. C., Ott, R. A., Palladino, K. J., Pangilinan, M., Pease, E. K., Phelps, P., Reichhart, L., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solovov, V. N., Sorensen, P., Stephenson, S., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Uvarov, S., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Young, S. K., Zhang, C., Science and Technology Facilities Council (STFC), and The Royal Society
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,Dark matter ,Massive particle ,FOS: Physical sciences ,chemistry.chemical_element ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,GASES ,Atomic ,01 natural sciences ,High Energy Physics - Experiment ,Physics, Particles & Fields ,ENERGY ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,XENON ,Particle and Plasma Physics ,0202 Atomic, Molecular, Nuclear, Particle And Plasma Physics ,Xenon ,0103 physical sciences ,Calibration ,PARTICLES ,Nuclear ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0206 Quantum Physics ,physics.ins-det ,Physics ,Quantum Physics ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Molecular ,Charge (physics) ,Instrumentation and Detectors (physics.ins-det) ,Nuclear & Particles Physics ,0201 Astronomical And Space Sciences ,chemistry ,Physical Sciences ,Scintillation counter ,Tritium ,Astrophysics - Instrumentation and Methods for Astrophysics ,DECAY ,Astronomical and Space Sciences ,astro-ph.IM - Abstract
We present measurements of the electron-recoil (ER) response of the LUX dark matter detector based upon 170 000 highly pure and spatially uniform tritium decays. We reconstruct the tritium energy spectrum using the combined energy model and find good agreement with expectations. We report the average charge and light yields of ER events in liquid xenon at 180 and 105 V/cm and compare the results to the NEST model. We also measure the mean charge recombination fraction and its fluctuations, and we investigate the location and width of the LUX ER band. These results provide input to a reanalysis of the LUX run 3 weakly interacting massive particle search.
- Published
- 2016
- Full Text
- View/download PDF
11. Direct search for dark matter with two-phase xenon detectors: Current status of LUX and plans for LZ
- Author
-
Akerib, D. S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Bernard, E., Bernstein, A., Bradley, A., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chapman, J. J., Chiller, A. A., Chiller, C., Coffey, T., Currie, A., Viveiros, L., Dobi, A., Dobson, J., Druszkiewicz, E., Edwards, B., Faham, C. H., Fiorucci, S., Flores, C., Gaitskell, R. J., Gehman, V. M., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Hall, C., Hertel, S. A., Horn, M., Huang, D. Q., Ihm, M., Jacobsen, R. G., Kazkaz, K., Knoche, R., Larsen, N. A., Lee, C., Lenardo, B., Lesko, K. T., Lindote, A., Lopes, M. I., Malling, D. C., Man-Nino, R., Mckinsey, D. N., Mei, D. -M, Mock, J., Moongweluwan, M., Morad, J., Murphy, A. St J., Nehrkorn, C., Nelson, H., Neves, F., Ott, R. A., Pangilinan, M., Parker, P. D., Pease, E. K., Pech, K., Phelps, P., Reichhart, L., Shutt, T., Claudio Silva, Solovov, V. N., Sorensen, P., O Sullivan, K., Sumner, T. J., Szydagis, M., Tay-Lor, D., Tennyson, B., Tiedt, D. R., Tripathi, M., Uvarov, S., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Witherell, M. S., Wolfs, F. L. H., Woods, M., and Zhang, C.
- Abstract
The search for dark matter reaches back generations and remains one of the most compelling endeavors in the hunt for physics beyond the Standard Model. Experiments attempting to directly detect WIMP dark matter have made re-markable progress in increasing sensitivity to elastic scattering of WIMPs on nuclei. The LUX experiment is a 370-kg, two-phase, xenon TPC currently running at SURF, 4850 feet below Lead, SD. LUX recently completed its first science run and was sensitive to spin independent WIMP scattering at cross sections below 10-45 cm2 for WIMP masses of approximately 20 to 80 GeV. Preparations for the final science run of LUX are currently underway, with final results expected in 2015. We will present results from and current status of the LUX experiment, as well as plans for a follow-on, multi-ton-scale xenon experiment at SURF.
- Published
- 2014
12. After LUX: The LZ Program
- Author
-
Malling, D. C., Akerib, D. S., Araujo, H. M., Bai, X., Bedikian, S., Bernard, E., Bernstein, A., Bradley, A., Cahn, S. B., Carmona-Benitez, M. C., Carr, D., Chapman, J. J., Clark, K., Classen, T., Coffey, T., Curioni, A., Currie, A., Dazeley, S., de Viveiros, L., Dragowsky, M., Druszkiewicz, E., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gibson, K. R., Hall, C., Hanhardt, M., Holbrook, B., Ihm, M., Jacobsen, R. G., Kastens, L., Kazkaz, K., Lander, R., Larsen, N., Lee, C., Leonard, D., Lesko, K., Lindote, A., Lopes, M. I., Lyashenko, A., Majewski, P., Mannino, R., McKinsey, D. N., Mei, D. -M., Mock, J., Morii, M., Murphy, A. St J., Nelson, H., Neves, F., Nikkel, J. A., Pangilinan, M., Phelps, P., Reichhart, L., Shutt, T., Silva, C., Skulski, W., Solovov, V., Sorensen, P., Spaans, J., Stiegler, T., Sumner, T. J., Svoboda, R., Sweany, M., Szydagis, M., Thomson, J., Tripathi, M., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Wlasenko, M., Wolfs, F. L. H., Woods, M., and Zhang, C.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
The LZ program consists of two stages of direct dark matter searches using liquid Xe detectors. The first stage will be a 1.5-3 tonne detector, while the last stage will be a 20 tonne detector. Both devices will benefit tremendously from research and development performed for the LUX experiment, a 350 kg liquid Xe dark matter detector currently operating at the Sanford Underground Laboratory. In particular, the technology used for cryogenics and electrical feedthroughs, circulation and purification, low-background materials and shielding techniques, electronics, calibrations, and automated control and recovery systems are all directly scalable from LUX to the LZ detectors. Extensive searches for potential background sources have been performed, with an emphasis on previously undiscovered background sources that may have a significant impact on tonne-scale detectors. The LZ detectors will probe spin-independent interaction cross sections as low as 5E-49 cm2 for 100 GeV WIMPs, which represents the ultimate limit for dark matter detection with liquid xenon technology., Conference proceedings from APS DPF 2011. 9 pages, 6 figures
- Published
- 2011
- Full Text
- View/download PDF
13. Lowering the low-energy threshold of xenon detectors
- Author
-
Sorenson, P, Angle, J, Aprile, E, Arneodo, F, Baudis, L, Bernstein, A, Bolozdynya, A, Brusov, P, Ferella, A D, Fernandes, L M P, Fiorucci, S, Gaitskell, R J, Giboni, K L, Gomez, R, Hasty, R, Kastens, L, Kwong, J, Lopes, J A M, Madden, N, Monzani, M E, Ni, K, Oberlack, U, Orboeck, J, Plante, G, Santorelli, R, dos Santos, J M F, Shagin, P, Shutt, T, Schulte, S, Winant, C, Yamashita, M, and University of Zurich
- Subjects
530 Physics ,10192 Physics Institute - Published
- 2010
- Full Text
- View/download PDF
14. The SuperCDMS Experiment
- Author
-
Schnee, Richard W., Akerib, D. S., Attisha, M. J., Bailey, C. N., Baudis, L., Bauer, Daniel A., Brink, P. L., Brusov, P. P., Bunker, R., Cabrera, B., Caldwell, David O., Chang, C. L., Cooley, J., Crisler, M. B., Cushman, P., Denes, P., Dragowsky, M. R., Duong, L., Filippini, J., Gaitskell, R. J., Golwala, S. R., Grant, D. R., Hennings-Yeomans, R., Holmgren, D., Huber, M. E., Irwin, K., Lu, A., Mahapatra, R., Meunier, P., Mirabolfathi, N., Nelson, H., Ogburn, R. W., Ramberg, E., Reisetter, A., Tarek Saab, Sadoulet, B., Sander, J., Seitz, D. N., Serfass, B., Sundqvist, K. M., Thompson, J-P F., Yellin, S., Yoo, J., and Young, B. A.
15. LUX-ZEPLIN (LZ) Technical Design Report
- Author
-
Mount, B. J., Hans, S., Rosero, R., Yeh, M., Chan, C., Gaitskell, R. J., Huang, D. Q., Makkinje, J., Malling, D. C., Pangilinan, M., Rhyne, C. A., Taylor, W. C., Verbus, J. R., Kim, Y. D., Lee, H. S., Lee, J., Leonard, D. S., Li, J., Belle, J., Cottle, A., Lippincott, W. H., Markley, D. J., Martin, T. J., Sarychev, M., Tope, T. E., Utes, M., Wang, R., Young, I., Araújo, H. M., Bailey, A. J., Bauer, D., Colling, D., Currie, A., Fayer, S., Froborg, F., Greenwood, S., Jones, W. G., Kasey, V., Khaleeq, M., Olcina, I., López Paredes, B., Richards, A., Sumner, T. J., Tomás, A., Vacheret, A., Brás, P., Lindote, A., Lopes, M. I., Neves, F., Rodrigues, J. P., Silva, C., Solovov, V. N., Barry, M. J., Cole, A., Dobi, A., Edwards, W. R., Faham, C. H., Fiorucci, S., Gantos, N. J., Gehman, V. M., Gilchriese, M. G. D., Hanzel, K., Hoff, M. D., Kamdin, K., Lesko, K. T., Mcconnell, C. T., O Sullivan, K., Oliver-Mallory, K. C., Patton, S. J., Saba, J. S., Sorensen, P., Thomas, K. J., Tull, C. E., Waldron, W. L., Witherell, M. S., Bernstein, A., Kazkaz, K., Xu, J., Akimov, D. Yu, Bolozdynya, A. I., Khromov, A. V., Konovalov, A. M., Kumpan, A. V., Sosnovtsev, V. V., Dahl, C. E., Temples, D., Carmona-Benitez, M. C., Viveiros, L., Akerib, D. S., Auyeung, H., Biesiadzinski, T. P., Breidenbach, M., Bramante, R., Conley, R., Craddock, W. W., Fan, A., Hau, A., Ignarra, C. M., Ji, W., Krebs, H. J., Linehan, R., Lee, C., Luitz, S., Mizrachi, E., Monzani, M. E., O Neill, F. G., Pierson, S., Racine, M., Ratcliff, B. N., Shutt, G. W., Shutt, T. A., Skarpaas, K., Stifter, K., To, W. H., Va Vra, J., Whitis, T. J., Wisniewski, W. J., Bai, X., Bunker, R., Coughlen, R., Hjemfelt, C., Leonard, R., Miller, E. H., Morrison, E., Reichenbacher, J., Schnee, R. W., Stark, M. R., Sundarnath, K., Tiedt, D. R., Timalsina, M., Bauer, P., Carlson, B., Horn, M., Johnson, M., Keefner, J., Maupin, C., Taylor, D. J., Balashov, S., Ford, P., Francis, V., Holtom, E., Khazov, A., Kaboth, A., Majewski, P., Nikkel, J. A., O, J., Preece, R. M., Grinten, M. G. D., Worm, S. D., Mannino, R. L., Stiegler, T. M., Terman, P. A., Webb, R. C., Levy, C., Mock, J., Szydagis, M., Busenitz, J. K., Elnimr, M., Hor, J. Y-K, Meng, Y., Piepke, A., Stancu, I., Kreczko, L., Krikler, B., Penning, B., Bernard, E. P., Jacobsen, R. G., Mckinsey, D. N., Watson, R., Cutter, J. E., El-Jurf, S., Gerhard, R. M., Hemer, D., Hillbrand, S., Holbrook, B., Lenardo, B. G., Manalaysay, A. G., Morad, J. A., Stephenson, S., Thomson, J. A., Tripathi, M., Uvarov, S., Haselschwardt, S. J., Kyre, S., Nehrkorn, C., Nelson, H. N., Solmaz, M., White, D. T., Cascella, M., Dobson, J. E. Y., Ghag, C., Liu, X., Manenti, L., Reichhart, L., Shaw, S., Utku, U., Beltrame, P., Davison, T. J. R., Marzioni, M. F., Murphy, A. St J., Nilima, A., Boxer, B., Burdin, S., Greenall, A., Powell, S., Rose, H. J., Sutcliffe, P., Balajthy, J., Edberg, T. K., Carter Hall, Silk, J. S., Hertel, S., Akerlof, C. W., Arthurs, M., Lorenzon, W., Pushkin, K., Schubnell, M., Boast, K. E., Carels, C., Fruth, T., Kraus, H., Liao, F. -T, Lin, J., Scovell, P. R., Druszkiewicz, E., Khaitan, D., Koyuncu, M., Skulski, W., Wolfs, F. L. H., Yin, J., Korolkova, E. V., Kudryavtsev, V. A., Rossiter, P., Woodward, D., Chiller, A. A., Chiller, C., Mei, D. -M, Wang, L., Wei, W. -Z, While, M., Zhang, C., Alsum, S. K., Benson, T., Carlsmith, D. L., Cherwinka, J. J., Dasu, S., Gregerson, G., Gomber, B., Pagac, A., Palladino, K. J., Vuosalo, C. O., Xiao, Q., Buckley, J. H., Bugaev, V. V., Olevitch, M. A., Boulton, E. M., Emmet, W. T., Hurteau, T. W., Larsen, N. A., Pease, E. K., Tennyson, B. P., Tvrznikova, L., and Science and Technology Facilities Council (STFC)
- Subjects
hep-ex ,physics.ins-det ,astro-ph.IM - Abstract
In this Technical Design Report (TDR) we describe the LZ detector to be built at the Sanford Underground Research Facility (SURF). The LZ dark matter experiment is designed to achieve sensitivity to a WIMP-nucleon spin-independent cross section of three times ten to the negative forty-eighth square centimeters.
16. Limits on the WIMP nucleon cross-section from the Cryogenic Dark Matter Search
- Author
-
Schnee, R. W., Abusaidi, R., Akerib, D. S., Barnes, P. D., Bauer, Daniel A., Bolozdynya, A., Brink, P. L., Bunker, R., Cabrera, B., Caldwell, David O., Castle, J. P., Chang, C., Clarke, R. M., Colling, P., Crisler, M. B., Cummings, A., Da Silva, A., Davies, A. K., Dixon, Roger L., Dougherty, B. L., Driscoll, D., Eichblatt, S., Emes, J., Gaitskell, R. J., Golwala, S. R., Hale, D., Haller, E. E., Donald Holmgren, Hellmig, J., Huber, M. E., Irwin, K. D., Jochum, J., Lipschultz, F. P., Lu, A., Maloney, C., Mandic, V., Martinis, J. M., Meunier, P., Nam, S. W., Nelson, H., Neuhauser, B., Penn, M. J., Perera, I. A., Perillo Isaac, M. C., Pritychenko, B., Ross, R. R., Saab, T., Sadoulet, B., Sander, J., Seitz, D. N., Shestople, P., Shutt, T., Smith, A., Smith, G. W., Sonnenschein, A. H., Spadafora, A. L., Stockwell, W. K., Taylor, J. D., White, S., Yellin, S., and Young, B. A.
17. Progress of CDMS-II at the Soudan Mine
- Author
-
R W Ogburn, Iv, Brink, P. L., Cooley, J., Cabrera, B., Chang, C. L., Akerib, D. S., Bailey, C. N., Brusov, P. P., Dragowsky, M. R., Driscoll, Donald D., Grant, D. R., Hennings-Yeomans, R., Kamat, S., Perera, T. A., Schnee, R. W., Wang, G., Attisha, M. J., Gaitskell, R. J., Thompson, J-P F., Baudis, L., Saab, T., Bauer, Daniel A., Crisler, M. B., Donald Holmgren, Ramberg, E., Yoo, J., Bunker, R., Caldwell, David O., Ferril, R., Mahapatra, R., Nelson, H., Nelson, R., Sander, J., Savage, Christopher, Yellin, S., Cushman, P., Duong, L., Reisetter, A., Ross, R., Sadoulet, B., Armel-Funkhouser, M. S., Daal, M., Filippini, J., Lu, A., Mandic, V., Meunier, P., Mirabolfathi, N., Seitz, D. N., Serfass, B., Sundqvist, K. M., Huber, M. E., Martinis, J. M., and Young, B. A.
18. Improved Limits on Scattering of Weakly Interacting Massive Particles from Reanalysis of 2013 LUX Data
- Author
-
LUX Collaboration, Akerib, D. S., Ara��jo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Bradley, A., Bramante, R., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chapman, J. J., Chiller, A. A., Chiller, C., Currie, A., Cutter, J. E., Davison, T. J. R., de Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Edwards, B. N., Faham, C. H., Fiorucci, S., Gaitskell, R. J., Gehman, V. M., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Ihm, M., Jacobsen, R. G., Ji, W., Kazkaz, K., Khaitan, D., Knoche, R., Larsen, N. A., Lee, C., Lenardo, B. G., Lesko, K. T., Lindote, A., Lopes, M. I., Malling, D. C., Manalaysay, A., Mannino, R. L., Marzioni, M. F., McKinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St. J., Nehrkorn, C., Nelson, H. N., Neves, F., O`Sullivan, K., Oliver-Mallory, K. C., Ott, R. A., Palladino, K. J., Pangilinan, M., Pease, E. K., Phelps, P., Reichhart, L., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solovov, V. N., Sorensen, P., Stephenson, S., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W., Tennyson, B. P., Terman, P. A., Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Uvarov, S., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Yazdani, K., Young, S. K., Zhang, C., Science and Technology Facilities Council (STFC), and The Royal Society
- Subjects
Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,Astrophysics ,7. Clean energy ,01 natural sciences ,09 Engineering ,High Energy Physics - Experiment ,LUX Collaboration ,ENERGY ,XENON ,High Energy Physics - Experiment (hep-ex) ,Xenon ,WIMP ,LIQUID ARGON ,physics.ins-det ,Physics ,02 Physical Sciences ,Astrophysics::Instrumentation and Methods for Astrophysics ,Instrumentation and Detectors (physics.ins-det) ,Physical Sciences ,astro-ph.CO ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,General Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Physics, Multidisciplinary ,Dark matter ,chemistry.chemical_element ,FOS: Physical sciences ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Nuclear physics ,0103 physical sciences ,DARK-MATTER ,Sensitivity (control systems) ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,01 Mathematical Sciences ,Scintillation ,Science & Technology ,hep-ex ,010308 nuclear & particles physics ,Scattering ,Dark matter halo ,chemistry ,High Energy Physics::Experiment ,SCINTILLATION ,Energy (signal processing) ,astro-ph.IM - Abstract
We present constraints on weakly interacting massive particles (WIMP)-nucleus scattering from the 2013 data of the Large Underground Xenon dark matter experiment, including $1.4\times10^{4}\;\mathrm{kg\; day}$ of search exposure. This new analysis incorporates several advances: single-photon calibration at the scintillation wavelength, improved event-reconstruction algorithms, a revised background model including events originating on the detector walls in an enlarged fiducial volume, and new calibrations from decays of an injected tritium $\beta$ source and from kinematically constrained nuclear recoils down to 1.1 keV. Sensitivity, especially to low-mass WIMPs, is enhanced compared to our previous results which modeled the signal only above a 3 keV minimum energy. Under standard dark matter halo assumptions and in the mass range above 4 $\mathrm{GeV}\,c^{-2}$, these new results give the most stringent direct limits on the spin-independent WIMP-nucleon cross section. The 90% C.L. upper limit has a minimum of 0.6 zb at 33 $\mathrm{GeV}\,c^{-2}$ WIMP mass., Comment: Accepted by Phys. Rev. Lett
- Full Text
- View/download PDF
19. Beyond the CDMS-II dark matter search: SuperCDMS
- Author
-
Brink, Paul L., Cabrera, B., Chang, C. L., Cooley, J., Ogburn, R. W., Akerib, D. S., Bailey, C. N., Brusov, P. P., Dragowsky, M. R., Grant, D. R., Hennings-Yeomans, R., Schnee, R. W., Attisha, M. J., Gaitskell, R. J., Thompson, J-P F., Baudis, L., Saab, T., Bauer, Daniel A., Crisler, M. B., Donald Holmgren, Ramberg, E., Yoo, J., Bunker, R., Caldwell, David O., Mahapatra, R., Nelson, H., Sander, J., Yellin, S., Cushman, P., Duong, L., Reisetter, A., Denes, P., Lu, A., Sadoulet, B., Filippini, J., Meunier, P., Mirabolfathi, N., Seitz, D. N., Serfass, B., Sundqvist, K. M., Golwala, S. R., Huber, M. E., Irwin, K. D., and Young, B. A.
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics - Abstract
Presently the CDMS-II collaboration's Weakly Interacting Massive Particle (WIMP) search at the Soudan Underground Laboratory sets the most stringent exclusion limits of any WIMP cold dark matter direct-detection experiment. To extend our reach further, to WIMP-nucleon cross sections in the range $10^{-46} - 10^{-44}$cm$^2$, we propose SuperCDMS, which would take advantage of a very deep site. One promising site is the recently approved SNOLab facility in Canada. In this paper we will present our overall plan, identify primary issues, and set the goals that need to be met prior to embarking upon each phase of SuperCDMS., Submitted to Texas Symposium on Relativistic Astrophysics held at Stanford, Dec. 2004. Paper has 6 pages, 4 figures
20. First Dark Matter Search Results from the LUX-ZEPLIN (LZ) Experiment
- Author
-
Jelle Aalbers, Akerib, D. S., Akerlof, C. W., Musalhi, A. K. Al, Alder, F., Alqahtani, A., Alsum, S. K., Amarasinghe, C. S., Ames, A., Anderson, T. J., Angelides, N., Araújo, H. M., Armstrong, J. E., Arthurs, M., Azadi, S., Bailey, A. J., Baker, A., Balajthy, J., Balashov, S., Bang, J., Bargemann, J. W., Barry, M. J., Barthel, J., Bauer, D., Baxter, A., Beattie, K., Belle, J., Beltrame, P., Bensinger, J., Benson, T., Bernard, E. P., Bhatti, A., Biekert, A., Biesiadzinski, T. P., Birch, H. J., Birrittella, B., Blockinger, G. M., Boast, K. E., Boxer, B., Bramante, R., Brew, C. A. J., Brás, P., Buckley, J. H., Bugaev, V. V., Burdin, S., Busenitz, J. K., Buuck, M., Cabrita, R., Carels, C., Carlsmith, D. L., Carlson, B., Carmona-Benitez, M. C., Cascella, M., Chan, C., Chawla, A., Chen, H., Cherwinka, J. J., Chott, N. I., Cole, A., Coleman, J., Converse, M. V., Cottle, A., Cox, G., Craddock, W. W., Creaner, O., Curran, D., Currie, A., Cutter, J. E., Dahl, C. E., David, A., Davis, J., Davison, T. J. R., Delgaudio, J., Dey, S., Viveiros, L., Dobi, A., Dobson, J. E. Y., Druszkiewicz, E., Dushkin, A., Edberg, T. K., Edwards, W. R., Elnimr, M. M., Emmet, W. T., Eriksen, S. R., Faham, C. H., Fan, A., Fayer, S., Fearon, N. M., Fiorucci, S., Flaecher, H., Ford, P., Francis, V. B., Fraser, E. D., Fruth, T., Gaitskell, R. J., Gantos, N. J., Garcia, D., Geffre, A., Gehman, V. M., Genovesi, J., Ghag, C., Gibbons, R., Gibson, E., Gilchriese, M. G. D., Gokhale, S., Gomber, B., Green, J., Greenall, A., Greenwood, S., Grinten, M. G. D., Gwilliam, C. B., Hall, C. R., Hans, S., Hanzel, K., Harrison, A., Hartigan-O Connor, E., Haselschwardt, S. J., Hertel, S. A., Heuermann, G., Hjemfelt, C., Hoff, M. D., Holtom, E., Hor, J. Y-K, Horn, M., Huang, D. Q., Hunt, D., Ignarra, C. M., Jacobsen, R. G., Jahangir, O., James, R. S., Jeffery, S. N., Ji, W., Johnson, J., Kaboth, A. C., Kamaha, A. C., Kamdin, K., Kasey, V., Kazkaz, K., Keefner, J., Khaitan, D., Khaleeq, M., Khazov, A., Khurana, I., Kim, Y. D., Kocher, C. D., Kodroff, D., Korley, L., Korolkova, E. V., Kras, J., Kraus, H., Kravitz, S., Krebs, H. J., Kreczko, L., Krikler, B., Kudryavtsev, V. A., Kyre, S., Landerud, B., Leason, E. A., Lee, C., Lee, J., Leonard, D. S., Leonard, R., Lesko, K. T., Levy, C., Li, J., Liao, F. -T, Liao, J., Lin, J., Lindote, A., Linehan, R., Lippincott, W. H., Liu, R., Liu, X., Liu, Y., Loniewski, C., Lopes, M. I., Lopez Asamar, E., Paredes, B. López, Lorenzon, W., Lucero, D., Luitz, S., Lyle, J. M., Majewski, P. A., Makkinje, J., Malling, D. C., Manalaysay, A., Manenti, L., Mannino, R. L., Marangou, N., Marzioni, M. F., Maupin, C., Mccarthy, M. E., Mcconnell, C. T., Mckinsey, D. N., Mclaughlin, J., Meng, Y., Migneault, J., Miller, E. H., Mizrachi, E., Mock, J. A., Monte, A., Monzani, M. E., Morad, J. A., Morales Mendoza, J. D., Morrison, E., Mount, B. J., Murdy, M., Murphy, A. St J., Naim, D., Naylor, A., Nedlik, C., Nehrkorn, C., Nelson, H. N., Neves, F., Nguyen, A., Nikoleyczik, J. A., Nilima, A., O, J., O Neill, F. G., O Sullivan, K., Olcina, I., Olevitch, M. A., Oliver-Mallory, K. C., Orpwood, J., Pagenkopf, D., Pal, S., Palladino, K. J., Palmer, J., Pangilinan, M., Parveen, N., Patton, S. J., Pease, E. K., Penning, B., Pereira, C., Pereira, G., Perry, E., Pershing, T., Peterson, I. B., Piepke, A., Podczerwinski, J., Porzio, D., Powell, S., Preece, R. M., Pushkin, K., Qie, Y., Ratcliff, B. N., Reichenbacher, J., Reichhart, L., Rhyne, C. A., Richards, A., Riffard, Q., Rischbieter, G. R. C., Rodrigues, J. P., Rodriguez, A., Rose, H. J., Rosero, R., Rossiter, P., Rushton, T., Rutherford, G., Rynders, D., Saba, J. S., Santone, D., Sazzad, A. B. M. R., Schnee, R. W., Scovell, P. R., Seymour, D., Shaw, S., Shutt, T., Silk, J. J., Silva, C., Sinev, G., Skarpaas, K., Skulski, W., Smith, R., Solmaz, M., Solovov, V. N., Sorensen, P., Soria, J., Stancu, I., Stark, M. R., Stevens, A., Stiegler, T. M., Stifter, K., Studley, R., Suerfu, B., Sumner, T. J., Sutcliffe, P., Swanson, N., Szydagis, M., Tan, M., Taylor, D. J., Taylor, R., Taylor, W. C., Temples, D. J., Tennyson, B. P., Terman, P. A., Thomas, K. J., Tiedt, D. R., Timalsina, M., To, W. H., Tomás, A., Tong, Z., Tovey, D. R., Tranter, J., Trask, M., Tripathi, M., Tronstad, D. R., Tull, C. E., Turner, W., Tvrznikova, L., Utku, U., Va Vra, J., Vacheret, A., Vaitkus, A. C., Verbus, J. R., Voirin, E., Waldron, W. L., Wang, A., Wang, B., Wang, J. J., Wang, W., Wang, Y., Watson, J. R., Webb, R. C., White, A., White, D. T., White, J. T., White, R. G., Whitis, T. J., Williams, M., Wisniewski, W. J., Witherell, M. S., Wolfs, F. L. H., Wolfs, J. D., Woodford, S., Woodward, D., Worm, S. D., Wright, C. J., Xia, Q., Xiang, X., Xiao, Q., Xu, J., Yeh, M., Yin, J., Young, I., Zarzhitsky, P., Zuckerman, A., and Zweig, E. A.
- Subjects
High Energy Physics - Experiment (hep-ex) ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,FOS: Physical sciences ,Cosmology and Nongalactic Astrophysics ,High Energy Physics - Experiment ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The LUX-ZEPLIN (LZ) experiment is a dark matter detector centered on a dual-phase xenon time projection chamber operating at the Sanford Underground Research Facility in Lead, South Dakota, USA. This Letter reports results from LZ's first search for Weakly Interacting Massive Particles (WIMPs) with an exposure of 60 live days using a fiducial mass of 5.5 t. A profile-likelihood ratio analysis shows the data to be consistent with a background-only hypothesis, setting new limits on spin-independent WIMP-nucleon, spin-dependent WIMP-neutron, and spin-dependent WIMP-proton cross-sections for WIMP masses above 9 GeV/c$^2$. The most stringent limit is set at 30 GeV/c$^2$, excluding cross sections above 6.5$\times 10^{-48}$ cm$^2$ at the 90\% confidence level., 9 pages, 8 figures. See https://tinyurl.com/LZDataReleaseRun1 for a data release related to this paper
21. Lowering the low-energy threshold of xenon detectors
- Author
-
Sorensen, P., Angle, J., Aprile, E., Arneodo, F., Baudis, L., Bernstein, A., Bolozdynya, A., Coelho, L. C. C., Dahl, C. E., Deviveiros, L., Ferella, A. D., Fernandes, L. M. P., Fiorucci, S., Gaitskell, R. J., Giboni, K. L., Gomez, R., Hasty, R., Kastens, L., Kwong, J., Lopes, J. A. M., Madden, N., Manalaysay, A., Manzur, A., Mckinsey, D. N., Monzani, M. E., Ni, K., Oberlack, U., Orboeck, J., Plante, G., Santorelli, R., Joaquim Marques Ferreira dos Santos, Schulte, S., Shagin, P., Shutt, T., Winant, C., and Yamashita, M.
22. Kr83m calibration of the 2013 LUX dark matter search
- Author
-
Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Beltrame, P., Bernard, E. P., Bernstein, A., Biesiadzinski, T. P., Boulton, E. M., Brás, P., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Currie, A., Cutter, J. E., Davison, T. J. R., Dobi, A., Druszkiewicz, E., Edwards, B. N., Fallon, S. R., Fan, A., Fiorucci, S., Gaitskell, R. J., Genovesi, J., Ghag, C., Gilchriese, M. G. D., Hall, C. R., Hanhardt, M., Haselschwardt, S. J., Hertel, S. A., Hogan, D. P., Horn, M., Huang, D. Q., Ignarra, C. M., Jacobsen, R. G., Ji, W., Kamdin, K., Kazkaz, K., Khaitan, D., Knoche, R., Larsen, N. A., Lenardo, B. G., Lesko, K. T., Lindote, A., Lopes, M. I., Manalaysay, A., Mannino, R. L., Marzioni, M. F., Mckinsey, D. N., Mei, D. -M, Mock, J., Moongweluwan, M., Morad, J. A., Murphy, A. St J., Nehrkorn, C., Nelson, H. N., Neves, F., O’sullivan, K., Oliver-Mallory, K. C., Palladino, K. J., Pease, E. K., Rhyne, C., Shaw, S., Shutt, T. A., Silva, C., Solmaz, M., Solovov, V. N., Sorensen, P., Sumner, T. J., Szydagis, M., Taylor, D. J., Taylor, W. C., Tennyson, B. P., Paul Terman, Tiedt, D. R., To, W. H., Tripathi, M., Tvrznikova, L., Uvarov, S., Velan, V., Verbus, J. R., Webb, R. C., White, J. T., Whitis, T. J., Witherell, M. S., Wolfs, F. L. H., Xu, J., Yazdani, K., Young, S. K., and Zhang, C.
- Subjects
Quantum Physics ,Particle and Plasma Physics ,Molecular ,Nuclear ,physics.ins-det ,Atomic ,Nuclear & Particles Physics ,Astronomical and Space Sciences - Abstract
LUX was the first dark matter experiment to use a Kr83m calibration source. In this paper, we describe the source preparation and injection. We also present several Kr83m calibration applications in the context of the 2013 LUX exposure, including the measurement of temporal and spatial variation in scintillation and charge signal amplitudes, and several methods to understand the electric field within the time projection chamber.
- Full Text
- View/download PDF
23. A Detailed Look at the First Results from the Large Underground Xenon (LUX) Dark Matter Experiment
- Author
-
Matthew Szydagis, Akerib, D. S., Araujo, H. M., Bai, X., Bailey, A. J., Balajthy, J., Bernard, E., Bernstein, A., Bradley, A., Byram, D., Cahn, S. B., Carmona-Benitez, M. C., Chan, C., Chapman, J. J., Chiller, A. A., Chiller, C., Coffey, T., Currie, A., Viveiros, L., Dobi, A., Dobson, J., Druszkiewicz, E., Edwards, B., Faham, C. H., Fiorucci, S., Flores, C., Gaitskell, R. J., Gehman, V. M., Ghag, C., Gibson, K. R., Gilchriese, M. G. D., Carter Hall, Hertel, S. A., Horn, M., Huang, D. Q., Ihm, M., Jacobsen, R. G., Kazkaz, K., Knoche, R., Larsen, N. A., Lee, C., Lindote, A., Lopes, M. I., Malling, D. C., Mannino, R., Mckinsey, D. N., Mei, D. M., Mock, J., Moongweluwan, M., Morad, J., Murphy, A. St J., Nehrkorn, C., Nelson, H., Neves, F., Ott, R. A., Pangilinan, M., Parker, P. D., Pease, E. K., Pech, K., Phelps, P., Reichhart, L., Shutt, T., Silva, C., Solovov, V. N., Sorensen, P., O Sullivan, K., Taylor, D., Tennyson, B., Tiedt, D. R., Tripathi, M., Uvarov, S., Verbus, J. R., Walsh, N., Webb, R., White, J. T., Witherell, M. S., Wolfs, F. L. H., Woods, M., and Zhang, C.
24. Deep Underground Science and Engineering Lab: S1 Dark Matter Working Group
- Author
-
Akerib, Daniel S., Aprile, E., Baltz, E. A., Dragowsky, M. R., Gaitskell, R. J., Gondolo, P., Hime, A., Martoff, C. J., Mei, D. -M, Nelson, H., Sadoulet, B., Schnee, R. W., Sonnenschein, A. H., and Louis Strigari
- Subjects
Astrophysics (astro-ph) ,FOS: Physical sciences ,Astrophysics - Abstract
A study of the current status of WIMP dark matter searches has been made in the context of scientific and technical planning for a Deep Underground Science and Engineering Laboratory (DUSEL) in the U.S. The table of contents follows: 1. Overview 2. WIMP Dark Matter: Cosmology, Astrophysics, and Particle Physics 3. Direct Detection of WIMPs 4. Indirect Detection of WIMPs 5. Dark Matter Candidates and New Physics in the Laboratory 6. Synergies with Other Sub-Fields 7. Direct Detection Experiments: Status and Future Prospects 8. Infrastructure 9. International Context 10. Summary and Outlook 11. Acknowledgments, Comment: Final working group report of 17 Feb 2007 updated to address reviewer comments (Latex, 32 pages)
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.