21 results on '"Isabelle K. Vila"'
Search Results
2. Alternative pathways driven by STING: From innate immunity to lipid metabolism
- Author
-
Isabelle K. Vila, Soumyabrata Guha, Joanna Kalucka, David Olagnier, and Nadine Laguette
- Subjects
Inflammation ,Innate immunity ,Endocrinology, Diabetes and Metabolism ,Immunology ,Membrane Proteins ,Lipid Metabolism ,Immunity, Innate ,General Biochemistry, Genetics and Molecular Biology ,Lipid metabolism ,Metabolism ,Humans ,Cytokines ,Immunology and Allergy ,STING ,Signal Transduction - Abstract
The Stimulator of Interferon Genes (STING) is a major adaptor protein that is central to the initiation of type I interferon responses and proinflammatory signalling. STING-dependent signalling is triggered by the presence of cytosolic nucleic acids that are generated following pathogen infection or cellular stress. Beyond this central role in controlling immune responses through the production of cytokines and chemokines, recent reports have uncovered inflammation-independent STING functions. Amongst these, a rapidly growing body of evidence demonstrates a key role of STING in controlling metabolic pathways at several levels. Since immunity and metabolic homeostasis are tightly interconnected, these findings deepen our understanding of the involvement of STING in human pathologies. Here, we discuss these findings and reflect on their impact on our current understanding of how nucleic acid immunity controls homeostasis and promotes pathological outcomes.
- Published
- 2022
3. <scp>DNA</scp> damage repair kinase <scp>DNA‐PK</scp> and <scp>cGAS</scp> synergize to induce cancer‐related inflammation in glioblastoma
- Author
-
Clara Taffoni, Johanna Marines, Hanane Chamma, Soumyabrata Guha, Mathilde Saccas, Amel Bouzid, Ana‐Luiza Chaves Valadao, Clément Maghe, Jane Jardine, Mi Kyung Park, Katarzyna Polak, Mara De Martino, Claire Vanpouille‐Box, Maguy Del Rio, Celine Gongora, Julie Gavard, Nicolas Bidère, Min Sup Song, Donovan Pineau, Jean‐Philippe Hugnot, Karima Kissa, Laura Fontenille, Fabien P Blanchet, Isabelle K Vila, Nadine Laguette, Institut de génétique humaine (IGH), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), AZELEAD, Signaling in Oncogenesis, Angiogenesis and Permeability - SOAP (CRCI2NA / Eq 6), Centre de Recherche en Cancérologie et Immunologie Intégrée Nantes-Angers (CRCI2NA ), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Santé, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Nantes Université - UFR de Médecine et des Techniques Médicales (Nantes Univ - UFR MEDECINE), Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), The University of Texas M.D. Anderson Cancer Center [Houston], Weill Cornell Medicine [Cornell University], Cornell University [New York], Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), Institut de Cancérologie de l'Ouest [Angers/Nantes] (UNICANCER/ICO), UNICANCER, Institut de Génomique Fonctionnelle (IGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Laboratory of Pathogen and Host Immunity [Montpellier] (LPHI), Institut de Recherche en Infectiologie de Montpellier (IRIM), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), European Project: 637763,H2020,ERC-2014-STG,CrIC(2015), and European Project: 893772,DIM-CrIC
- Subjects
DNA-PK ,General Immunology and Microbiology ,inflammation ,[SDV]Life Sciences [q-bio] ,General Neuroscience ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,Molecular Biology ,tumor immunogenicity ,General Biochemistry, Genetics and Molecular Biology ,cGAS - Abstract
International audience; Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
- Published
- 2022
4. Dietary restriction induces a sexually dimorphic type I interferon response in mice with gene-environment interactions
- Author
-
Dylan J. Harney, Michelle Cielesh, Georgia E. Roberts, Isabelle K. Vila, Barney Viengkhou, Markus J. Hofer, Nadine Laguette, and Mark Larance
- Subjects
General Biochemistry, Genetics and Molecular Biology - Published
- 2023
5. The crosstalk between DNA-PK and cGAS drives tumor immunogenicity
- Author
-
Clara Taffoni, Johanna Marines, Hanane Chamma, Mathilde Saccas, Amel Bouzid, Soumyabrata Guha, Ana-Luiza Chaves Valadao, Katarzyna Polak, Maguy Del Rio, Celine Gongora, Donovan Pineau, Jean-Philippe Hugnot, Karima Kissa, Laura Fontenille, Fabien P. Blanchet, Isabelle K. Vila, and Nadine Laguette
- Abstract
SUMMARYCytosolic DNAs promote inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been thus suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that lack cGAS to question whether alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex drives cGAS independent inflammatory responses but that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment, a process that impaired early tumorigenesis but correlated with poor outcome. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.
- Published
- 2022
6. Protocol to induce and assess cGAS-STING pathway activation
- Author
-
Hanane, Chamma, Soumyabrata, Guha, Nadine, Laguette, and Isabelle K, Vila
- Subjects
Mice ,Nucleic Acids ,Animals ,Humans ,Membrane Proteins ,Nucleotidyltransferases ,Signal Transduction - Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway plays a pivotal role in several cellular processes including pathogen recognition and inflammatory responses. We describe a protocol to activate the cGAS-STING pathway in murine cells using nucleic acids transfection. We describe how to prepare the nucleic acid probes and validate activation of the pathway by western blot and gene expression analysis. The protocol can be applied to investigate cGAS-STING signaling in both murine and human cell lines. For complete details on the use and execution of this protocol, please refer to Vila et al. (2022)
- Published
- 2022
7. Protocol to induce and assess cGAS-STING pathway activation in vitro
- Author
-
Hanane Chamma, Soumyabrata Guha, Nadine Laguette, and Isabelle K. Vila
- Subjects
General Immunology and Microbiology ,General Neuroscience ,General Biochemistry, Genetics and Molecular Biology - Published
- 2022
8. Nucleic Acid Immunity and DNA Damage Response: New Friends and Old Foes
- Author
-
Clara Taffoni, Alizée Steer, Johanna Marines, Hanane Chamma, Isabelle K. Vila, Nadine Laguette, Institut de génétique humaine (IGH), and Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,cGAS-STING ,DNA damage ,Mini Review ,[SDV]Life Sciences [q-bio] ,Immunology ,Biology ,[SDV.IMM.II]Life Sciences [q-bio]/Immunology/Innate immunity ,DNA-PK ,03 medical and health sciences ,Cytosol ,0302 clinical medicine ,Immune system ,Interferon ,Nucleic Acids ,[SDV.BBM.GTP]Life Sciences [q-bio]/Biochemistry, Molecular Biology/Genomics [q-bio.GN] ,medicine ,Humans ,Immunology and Allergy ,cytosolic nucleic acids ,IFI16 ,Innate immune system ,Pattern recognition receptor ,Membrane Proteins ,RC581-607 ,Immunity, Innate ,3. Good health ,Cell biology ,body regions ,tumorigenesis ,Crosstalk (biology) ,030104 developmental biology ,inflammation ,Receptors, Pattern Recognition ,030220 oncology & carcinogenesis ,Nucleic acid ,Immunologic diseases. Allergy ,DNA damage responses ,DNA Damage ,Signal Transduction ,medicine.drug - Abstract
International audience; The maintenance of genomic stability in multicellular organisms relies on the DNA damage response (DDR). The DDR encompasses several interconnected pathways that cooperate to ensure the repair of genomic lesions. Besides their repair functions, several DDR proteins have emerged as involved in the onset of inflammatory responses. In particular, several actors of the DDR have been reported to elicit innate immune activation upon detection of cytosolic pathological nucleic acids. Conversely, pattern recognition receptors (PRRs), initially described as dedicated to the detection of cytosolic immune-stimulatory nucleic acids, have been found to regulate DDR. Thus, although initially described as operating in specific subcellular localizations, actors of the DDR and nucleic acid immune sensors may be involved in interconnected pathways, likely influencing the efficiency of one another. Within this mini review, we discuss evidences for the crosstalk between PRRs and actors of the DDR. For this purpose, we mainly focus on cyclic GMP-AMP (cGAMP) synthetase (cGAS) and Interferon Gamma Inducible Protein 16 (IFI16), as major PRRs involved in the detection of aberrant nucleic acid species, and components of the DNA-dependent protein kinase (DNA-PK) complex, involved in the repair of double strand breaks that were recently described to qualify as potential PRRs. Finally, we discuss how the crosstalk between DDR and nucleic acid-associated Interferon responses cooperate for the fine-tuning of innate immune activation, and therefore dictate pathological outcomes. Understanding the molecular determinants of such cooperation will be paramount to the design of future therapeutic approaches.
- Published
- 2021
9. Sting orchestrates the crosstalk between polyunsaturated fatty acids metabolism and inflammatory responses
- Author
-
Xavier Bonnefont, Andrei Turtoi, Hanane Chamma, Alizée Steer, Isabelle K. Vila, Johanna Marines, Dimitrios Vlachakis, Nadine Laguette, Mathilde Saccas, Clara Taffoni, Lei Jin, Line S. Reinert, Søren R. Paludan, and Evgenia Turtoi
- Subjects
chemistry.chemical_classification ,0303 health sciences ,FADS2 ,Inflammation ,Biology ,eye diseases ,Cell biology ,03 medical and health sciences ,Sting ,0302 clinical medicine ,Immune system ,Fatty acid desaturase ,chemistry ,030220 oncology & carcinogenesis ,Stimulator of interferon genes ,medicine ,biology.protein ,medicine.symptom ,Homeostasis ,030304 developmental biology ,Polyunsaturated fatty acid - Abstract
SummaryInflammatory disorders are major health issues in which immune function and metabolic homeostasis are concertedly altered. Yet, the molecular mechanisms coordinating innate and metabolic pathways in homeostatic conditions are poorly understood. Here, we unveil a negative regulatory feedback loop involving the Stimulator of interferon genes (Sting) and the Fatty acid desaturase 2 (Fads2). At steady state, Sting regulates FA metabolism by repressing the activity of the Fads2 enzyme responsible for the desaturation of polyunsaturated FAs (PUFAs). Importantly, Sting activation increased Fads2 activity, while antagonizing Fads2 enhanced Sting activation, promoting the establishment of an anti-viral state. Remarkably, the cross-regulation between Sting and Fads2 is mediated by the cyclic GMP-AMP (cGAMP) Sting agonist and PUFAs. Indeed, we found that PUFAs inhibit Sting activation, while Sting agonists bind Fads2. Thus, our study identifies Sting as a master regulator of FA metabolism, and PUFAs as modulators of Sting-dependent inflammation. The interplay between Fads2 and Sting determines the fine-tuning of inflammatory responses, but comes at the expense of metabolic alterations, which are critical to consider in human pathologies associated with aberrant Sting activation.
- Published
- 2020
10. Animal Models for the Study of Nucleic Acid Immunity: Novel Tools and New Perspectives
- Author
-
Dimitrios Vlachakis, Maxence Frétaud, Isabelle K. Vila, Christelle Langevin, Nadine Laguette, Institut de génétique humaine (IGH), Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Virologie et Immunologie Moléculaires (VIM (UR 0892)), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), School of Applied Biology and Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens (NKUA), ANRS ECTZ117448LA LIGUE pour la recherche contre le cancer AdjustEBOVGP-Dx, a European & Developing Countries Clinical Trials Partnership (EDCTP2) under the Horizon 2020 'Research and Innovation Actions' DESCA RIA2018EF-2081, European Project: 893772,DIM-CrIC, European Project: 637763,H2020,ERC-2014-STG,CrIC(2015), and European Project: 731014,VetBioNet(2017)
- Subjects
[SDV]Life Sciences [q-bio] ,Drug Evaluation, Preclinical ,Inflammation ,Computational biology ,Antiviral Agents ,Article ,Evolution, Molecular ,03 medical and health sciences ,Mice ,0302 clinical medicine ,Cytosol ,Structural Biology ,Immunity ,Nucleic Acids ,medicine ,Animals ,Heterogeneous information ,Molecular Biology ,Zebrafish ,Organism ,030304 developmental biology ,0303 health sciences ,biology ,Signal transducing adaptor protein ,Membrane Proteins ,biology.organism_classification ,Nucleotidyltransferases ,Immunity, Innate ,3. Good health ,High-Throughput Screening Assays ,DNA, Viral ,Interferon Type I ,Models, Animal ,Mutation ,Nucleic acid ,medicine.symptom ,030217 neurology & neurosurgery ,Signal Transduction - Abstract
Unresolved inflammation fosters and supports a wide range of human pathologies. There is growing evidence for a role played by cytosolicnucleic acidsin initiating and supporting pathological chronic inflammation. In particular, the cGAS-STING pathway has emerged as central to the mounting of nucleic acid-dependenttype I interferonresponses, leading to the identification of small-molecule modulators of STING that have raised clinical interest. However, several new challenges have emerged, representing potential obstacles to efficient clinical translation. Indeed, the current literature underscores that nucleic acid-induced inflammatory responses are subjected to several layers of regulation, further suggesting complex coordination at the cell-type, tissue or organism level. Untangling the underlying processes is paramount to the identification of specific therapeutic strategies targeting deleterious inflammation. Herein, we present an overview of human pathologies presenting with deregulated interferon levels and with accumulation of cytosolicnucleic acids. We focus on the central role of the STING adaptor protein in these pathologies and discuss howin vivomodels have forged our current understanding of nucleic acid immunity. We present our opinion on the advantages and limitations of zebrafish and mice models to highlight their complementarity for the study of inflammatory human pathologies and the development of therapeutics. Finally, we discuss high-throughput screening strategies that generate multi-parametric datasets that allow integrative analysis of heterogeneous information (imaging and omics approaches). These approaches are likely to structure the future of screening strategies for the treatment of human pathologies.
- Published
- 2020
11. STING orchestrates the crosstalk between polyunsaturated fatty acid metabolism and inflammatory responses
- Author
-
Isabelle K. Vila, Hanane Chamma, Alizée Steer, Mathilde Saccas, Clara Taffoni, Evgenia Turtoi, Line S. Reinert, Saqib Hussain, Johanna Marines, Lei Jin, Xavier Bonnefont, Mathieu Hubert, Olivier Schwartz, Soren R. Paludan, Gaetan Van Simaeys, Gilles Doumont, Bijan Sobhian, Dimitrios Vlachakis, Andrei Turtoi, Nadine Laguette, Institut de génétique humaine (IGH), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM), CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM), BioCampus (BCM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Aarhus University [Aarhus], Albany Medical College, Institut de Génomique Fonctionnelle (IGF), Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Aarhus University Hospital, Center for Microscopy and Molecular Imaging (IBMM - CMMI), Université libre de Bruxelles (ULB), Agricultural University of Athens, Biomedical Research Foundation of the Academy of Athens (BRFAA), National and Kapodistrian University of Athens (NKUA), We acknowledge the SIRIC Montpellier Cancer grant (INCa_Inserm_DGOS_12553), Metamus-RAM and iExplore-RAM animal facilities, the Laboratoire de Mesures Physiques of the University of Montpellier for access to the MS instruments, the MRI imaging facility, member of the national infrastructure France-BioImaging infrastructure supported by the French National Research Agency (ANR-10-INBS-04, 'Investments for the future'), and Ross Tomaino from the Taplin Mass Spectrometry Facility of Harvard Medical School for MS analysis. We thank T. Emilien, A. Sedda, C. de Maeseneire, N. Passon, and C. Van Heymbeek for their contribution. We thank the Cyclotron team from the Erasme Hospital, Brussels, Belgium, for the FDG provision. Work in N.L.’s laboratory is supported by the European Research Council (ERC-Stg CrIC: 637763, ERC-PoC DIM-CrIC: 893772), la Ligue pour la Recherche contre le Cancer, and the Agence Nationale de Recherche sur le Sida et les Hépatites Virales (ANRS: ECTZ117448). H.C. is supported by a PhD fellowship from la Ligue pour la Recherche contre le Cancer. C.T. is supported by the Merck Sharp and Dohme Avenir (MSD-Avenir – GnoSTic) program and an ANRS fellowship (ECTZ119088). J.M. is supported by a Conventions Industrielles de Formation par la Recherche (CIFRE) fellowship from the Agence Nationale de Recherche Technologie (ANRT). A.S. is supported by the ERC-PoC DIM-CrIC (893772). I.K.V. is supported by the ERC-Stg CrIC (637763) and the Fondation pour la Recherche Médicale (ARF20170938586). Work in S.R.P.’s laboratory is supported by the European Research Council (ERC-AdG ENVISION, 786602), the Novo Nordisk Foundation (NNF18OC0030274), and the Lundbeck Foundation (R198-2015-171 and R268-2016-3927). Work in A.T.’s laboratory is supported by a SIRIC Montpellier Cancer grant (INCa_Inserm_DGOS_12553), the Fondation de France (grant no. 00078461), and a LabEx MabImprove Starting Grant. X.B. is supported by ANR GH-gen (ANR-18-CE14-0017). The Center for Microscopy and Molecular Imaging (CMMI) is supported by the European Regional Development Fund (ERDF), the Walloon Region, the Fondation ULB, the Fonds Erasme, and Association Vinçotte Nuclear (AVN). G.D. is supported by the European Regional Development Fund (ERDF) and the Walloon Region. Work in O.S.’s lab is funded by Institut Pasteur, Urgence COVID-19 Fundraising Campaign of Institut Pasteur, ANRS, the Vaccine Research Institute (ANR-10-LABX-77), Labex IBEID (ANR-10-LABX-62-IBEID), ANR/FRM Flash Covid PROTEO-SARS-CoV-2, and IDISCOVR, Fondation pour la Recherche Médicale. Schematic representations were created with https://biorender.com, We thank M. Benkirane, G. Cavalli, J. Déjardin, and B. de Massy for discussions and comments. We thank C. Goujon and B. Bonaventure for CRISPR/Cas9 gRNA sequences., ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), ANR-10-LABX-0053,MAbImprove,Optimization of therapeutic monoclonal antibodies development Better antibodies, better developed AND better used(2010), ANR-18-CE14-0017,GH-Gen,Origine et fonction du generateur hypophysaire de pulses d'hormone de croissance(2018), ANR-10-LABX-0062,IBEID,Integrative Biology of Emerging Infectious Diseases(2010), ANR-10-LABX-0077,VRI,Initiative for the creation of a Vaccine Research Institute(2010), ANR-20-COVI-0062,proteoCOVID,Protéomique clinique de la protéine SARS-CoV-2 Spike pour optimiser sa détection et le développement de tests sérologiques(2020), European Project: 637763,H2020,ERC-2014-STG,CrIC(2015), European Project: 893772,DIM-CrIC, European Project: 786602,ENVISION, Virus et Immunité - Virus and immunity, Guerineau, Nathalie C., Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, Laboratoires d'excellence - Optimization of therapeutic monoclonal antibodies development Better antibodies, better developed AND better used - - MAbImprove2010 - ANR-10-LABX-0053 - LABX - VALID, APPEL À PROJETS GÉNÉRIQUE 2018 - Origine et fonction du generateur hypophysaire de pulses d'hormone de croissance - - GH-Gen2018 - ANR-18-CE14-0017 - AAPG2018 - VALID, Integrative Biology of Emerging Infectious Diseases - - IBEID2010 - ANR-10-LABX-0062 - LABX - VALID, Laboratoires d'excellence - Initiative for the creation of a Vaccine Research Institute - - VRI2010 - ANR-10-LABX-0077 - LABX - VALID, Protéomique clinique de la protéine SARS-CoV-2 Spike pour optimiser sa détection et le développement de tests sérologiques - - proteoCOVID2020 - ANR-20-COVI-0062 - COVID-19 - VALID, Molecular basis of the cross-talk between chronic inflammation and cancer - CrIC - - H20202015-04-01 - 2020-03-31 - 637763 - VALID, Decreasing Pancreatic Adenocarcinoma-related Inflammation using small molecule inhibitors of STING - DIM-CrIC - 893772 - INCOMING, Novel mechanisms of early defense against virus infections - ENVISION - 786602 - INCOMING, Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), BioCampus Montpellier (BCM), Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), AZELEAD, 377 Rue du Professeur Blayac, 34080 Montpellier, France, Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS), and Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Fatty Acid Desaturases ,Physiology ,[SDV]Life Sciences [q-bio] ,nucleic acid immunity ,[SDV.BC]Life Sciences [q-bio]/Cellular Biology ,cytosolic DNA ,Article ,03 medical and health sciences ,0302 clinical medicine ,delta-6 Desaturase ,Humans ,FADS2 ,[SDV.BC] Life Sciences [q-bio]/Cellular Biology ,Molecular Biology ,030304 developmental biology ,Inflammation ,Metabolic Syndrome ,interferon responses ,0303 health sciences ,Cell Biology ,Lipid Metabolism ,eye diseases ,3. Good health ,[SDV] Life Sciences [q-bio] ,Fatty Acids, Unsaturated/metabolism ,inflammation ,030220 oncology & carcinogenesis ,Fatty Acids, Unsaturated ,metabolism ,Fatty Acid Desaturases/genetics ,STING ,cGAS ,polyunsaturated fatty acids - Abstract
Summary Concerted alteration of immune and metabolic homeostasis underlies several inflammation-related pathologies, ranging from metabolic syndrome to infectious diseases. Here, we explored the coordination of nucleic acid-dependent inflammatory responses and metabolic homeostasis. We reveal that the STING (stimulator of interferon genes) protein regulates metabolic homeostasis through inhibition of the fatty acid desaturase 2 (FADS2) rate-limiting enzyme in polyunsaturated fatty acid (PUFA) desaturation. STING ablation and agonist-mediated degradation increased FADS2-associated desaturase activity and led to accumulation of PUFA derivatives that drive thermogenesis. STING agonists directly activated FADS2-dependent desaturation, promoting metabolic alterations. PUFAs in turn inhibited STING, thereby regulating antiviral responses and contributing to resolving STING-associated inflammation. Thus, we have unveiled a negative regulatory feedback loop between STING and FADS2 that fine-tunes inflammatory responses. Our results highlight the role of metabolic alterations in human pathologies associated with aberrant STING activation and STING-targeting therapies., Graphical abstract, Highlights • STING inhibits FADS2-dependent desaturation of PUFAs and LC-PUFAs • STING activation leads to upregulation of FADS2-associated desaturase activity • STING agonists activate FADS2-dependent PUFA and LC-PUFA desaturation • PUFAs inhibit STING-dependent inflammatory responses, The stimulator of interferon genes (STING) is a central regulator of nucleic acid-associated inflammatory responses. Here, Vila et al. discover that STING regulates polyunsaturated fatty acid (PUFA) metabolism, and in turn, PUFAs inhibit STING-dependent inflammation. This cross-regulation is central to the maintenance of metabolic homeostasis.
- Published
- 2022
12. A muscle-specific UBE2O/AMPKα2 axis promotes insulin resistance and metabolic syndrome in obesity
- Author
-
Min Sup Song, Sung-Woo Choi, Cedric Moro, Jongkyeong Chung, Vihang A. Narkar, Hye Jin Kim, Stephanie Rebecca Setijono, Pierre-Marie Badin, Sekyu Choi, Mi Kyung Park, Yixin Yao, Isabelle K. Vila, and Su Jung Song
- Subjects
Male ,0301 basic medicine ,medicine.medical_specialty ,Myoblasts, Skeletal ,medicine.medical_treatment ,Primary Cell Culture ,Adipose tissue ,Type 2 diabetes ,AMP-Activated Protein Kinases ,Biology ,Diet, High-Fat ,Energy homeostasis ,Cell Line ,Mice ,03 medical and health sciences ,0302 clinical medicine ,Insulin resistance ,Internal medicine ,Diabetes mellitus ,medicine ,Animals ,Humans ,Insulin ,Obesity ,Muscle, Skeletal ,Metabolic Syndrome ,Mice, Knockout ,Ubiquitination ,Skeletal muscle ,General Medicine ,Lipid Metabolism ,medicine.disease ,Up-Regulation ,Disease Models, Animal ,Glucose ,030104 developmental biology ,Endocrinology ,medicine.anatomical_structure ,Diabetes Mellitus, Type 2 ,030220 oncology & carcinogenesis ,Proteolysis ,Ubiquitin-Conjugating Enzymes ,Female ,Insulin Resistance ,Metabolic syndrome ,Research Article - Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is expressed preferentially in metabolic tissues, but its role in regulating energy homeostasis has yet to be defined. Here we find that UBE2O is markedly upregulated in obese subjects with type 2 diabetes and show that whole-body disruption of Ube2o in mouse models in vivo results in improved metabolic profiles and resistance to high-fat diet–induced (HFD-induced) obesity and metabolic syndrome. With no difference in nutrient intake, Ube2o(–/–) mice were leaner and expended more energy than WT mice. In addition, hyperinsulinemic-euglycemic clamp studies revealed that Ube2o(–/–) mice were profoundly insulin sensitive. Through phenotype analysis of HFD mice with muscle-, fat-, or liver–specific knockout of Ube2o, we further identified UBE2O as an essential regulator of glucose and lipid metabolism programs in skeletal muscle, but not in adipose or liver tissue. Mechanistically, UBE2O acted as a ubiquitin ligase and targeted AMPKα2 for ubiquitin-dependent degradation in skeletal muscle; further, muscle-specific heterozygous knockout of Prkaa2 ablated UBE2O-controlled metabolic processes. These results identify the UBE2O/AMPKα2 axis as both a potent regulator of metabolic homeostasis in skeletal muscle and a therapeutic target in the treatment of diabetes and metabolic disorders.
- Published
- 2019
13. Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages
- Author
-
Diane Beuzelin, Geneviève Tavernier, Sylvie Caspar-Bauguil, Christiane Pecher, Dominique Langin, Marie Adeline Marques, Alexia Zakaroff-Girard, Marianne Houssier, Corinne Lefort, Isabelle K. Vila, Lucile Mir, Sarah Nicolas, Cedric Moro, Catherine Ines Kolditz, and Etienne Mouisel
- Subjects
Male ,medicine.medical_specialty ,Lipolysis ,Endocrinology, Diabetes and Metabolism ,Adipose tissue macrophages ,Palmitic Acid ,Adipose tissue ,Adrenergic beta-3 Receptor Agonists ,Dioxoles ,White adipose tissue ,Cell Line ,Mice ,chemistry.chemical_compound ,Insulin resistance ,Internal medicine ,Adipocyte ,Adipocytes ,Internal Medicine ,medicine ,Animals ,Humans ,adipocyte protein 2 ,Triglycerides ,Inflammation ,Mice, Knockout ,biology ,Chemistry ,Macrophages ,Stem Cells ,Fatty Acids ,medicine.disease ,Toll-Like Receptor 4 ,Endocrinology ,Adipose Tissue ,Lipogenesis ,biology.protein - Abstract
Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs).Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice.Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype.Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.
- Published
- 2015
14. Long-term PGC1β overexpression leads to apoptosis, autophagy and muscle wasting
- Author
-
Vikas Yadav, Min Sup Song, Qingchun Tong, Eun Ran Kim, Vihang A. Narkar, George G. Rodney, Pierre Marie Badin, Sabina Lorca, Megha Sheth, Neah Likhite, Danesh H. Sopariwala, and Isabelle K. Vila
- Subjects
0301 basic medicine ,Genetically modified mouse ,medicine.medical_specialty ,lcsh:Medicine ,Apoptosis ,Mice, Transgenic ,Biology ,Article ,Mice ,03 medical and health sciences ,Internal medicine ,Autophagy ,medicine ,Animals ,E2F1 ,Nuclear protein ,Muscle, Skeletal ,lcsh:Science ,Myopathy ,Insulin-like growth factor 1 receptor ,Multidisciplinary ,030102 biochemistry & molecular biology ,lcsh:R ,Ubiquitination ,Nuclear Proteins ,Skeletal muscle ,Organ Size ,Muscular Atrophy ,Oxidative Stress ,030104 developmental biology ,medicine.anatomical_structure ,Endocrinology ,Proteolysis ,lcsh:Q ,medicine.symptom ,ITGA7 ,Transcription Factors - Abstract
Skeletal muscle wasting is prevalent in many chronic diseases, necessitating inquiries into molecular regulation of muscle mass. Nuclear receptor co-activator peroxisome proliferator-activated receptor co-activator 1 alpha (PGC1α) and its splice variant PGC1α4 increase skeletal muscle mass. However, the effect of the other PGC1 sub-type, PGC1β, on muscle size is unclear. In transgenic mice selectively over-expressing PGC1β in the skeletal muscle, we have found that PGC1β progressively decreases skeletal muscle mass predominantly associated with loss of type 2b fast-twitch myofibers. Paradoxically, PGC1β represses the ubiquitin-proteolysis degradation pathway genes resulting in ubiquitinated protein accumulation in muscle. However, PGC1β overexpression triggers up-regulation of apoptosis and autophagy genes, resulting in robust activation of these cell degenerative processes, and a concomitant increase in muscle protein oxidation. Concurrently, PGC1β up-regulates apoptosis and/or autophagy transcriptional factors such as E2f1, Atf3, Stat1, and Stat3, which may be facilitating myopathy. Therefore, PGC1β activation negatively affects muscle mass over time, particularly fast-twitch muscles, which should be taken into consideration along with its known aerobic effects in the skeletal muscle.
- Published
- 2017
15. A new duet in cancer biology: AMPK the typical and UBE2O the atypical
- Author
-
Min Sup Song, Isabelle K. Vila, and Su Jung Song
- Subjects
0301 basic medicine ,chemistry.chemical_classification ,Adenosine monophosphate ,Cancer Research ,biology ,Cancer ,AMPK ,medicine.disease ,medicine.disease_cause ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,Enzyme ,Ubiquitin ,chemistry ,Downregulation and upregulation ,Biochemistry ,medicine ,Cancer research ,biology.protein ,Molecular Medicine ,Carcinogenesis ,Author's View ,PI3K/AKT/mTOR pathway - Abstract
Ubiquitin-conjugating enzyme E2O (UBE2O) is upregulated in human cancers. We have demonstrated that genetic deletion or pharmacological blockade of UBE2O reduces tumorigenesis through inhibiting the mammalian target of rapamycin complex 1-hypoxia-inducible factor 1-α pathway. Critically, UBE2O targets adenosine monophosphate (AMP)-activated protein kinase-α 2 (AMPKα2) for ubiquitination and degradation. We thus suggest the UBE2O-AMPKα2 axis as a potential therapeutic target for cancer.
- Published
- 2017
16. Immune Cell Toll-like Receptor 4 Mediates the Development of Obesity- and Endotoxemia-Associated Adipose Tissue Fibrosis
- Author
-
Jacques Grober, Vladimir Stich, Philippe Gui, Corinne Lefort, Geneviève Tavernier, Virginie Bourlier, Isabelle K. Vila, Lenka Rossmeislová, Lucile Mir, Katie Louche, Anne Bouloumié, Nathalie Viguerie, Pierre Marie Badin, Balbine Roussel, Alexia Zakaroff-Girard, Dominique Langin, Cedric Moro, Marie Adeline Marques, Laurent Monbrun, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées, Franco-Czech Laboratory for Clinical Research on Obesity, Charles University [Prague] (CU)-Institut National de la Santé et de la Recherche Médicale (INSERM), PHOTONIQUE (XLIM-PHOTONIQUE), XLIM (XLIM), Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Centre National de la Recherche Scientifique (CNRS), Sérine protéases et physiopathologie de l'unité neurovasculaire, Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Institut National de la Santé et de la Recherche Médicale (INSERM), Lipides - Nutrition - Cancer (U866) (LNC), Université de Bourgogne (UB)-Institut National de la Santé et de la Recherche Médicale (INSERM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon (ENSBANA), Laboratoire d'Excellence : Lipoprotéines et Santé : prévention et Traitement des maladies Inflammatoires et du Cancer (LabEx LipSTIC), Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Paris-Sud - Paris 11 (UP11)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Gustave Roussy (IGR)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Université de Bourgogne (UB)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Régional de Lutte contre le cancer Georges-François Leclerc [Dijon] (UNICANCER/CRLCC-CGFL), UNICANCER-UNICANCER-Institut National de la Santé et de la Recherche Médicale (INSERM)-Fédération Francophone de la Cancérologie Digestive, FFCD-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS [Bourgogne-Franche-Comté])-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Montpellier (UM), Forschungsinstitut für Rationalisierung e.V. (FIR) an der RWTH Aachen, Franco-czech Laboratory for clinical research on obesity, Institut de médecine moléculaire de Rangueil (I2MR), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IFR150-Institut National de la Santé et de la Recherche Médicale (INSERM), I.K.V. was supported by fellowships from Inserm and Région Midi-Pyrénées. This work was supported by grants from Agence Nationale de la Recherche (LIPOB and OBELIP projects), Région Midi-Pyrénées, Fondation pour la Recherche Médicale, and the Commission of the European Communities (projects DIABAT, HEPADIP, and ADAPT) (to D.L.) and by a grant from Société Francophone du Diabète (to C.M.)., Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Departament Geodinàmica i Geofísica, Facultat de Geologia, Institut National de la Recherche Agronomique (INRA)-Université Montpellier 2 - Sciences et Techniques (UM2)-Université Paris-Sud - Paris 11 (UP11)-École pratique des hautes études (EPHE)-Institut Gustave Roussy (IGR)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Université de Bourgogne (UB)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Régional de Lutte contre le cancer - Centre Georges-François Leclerc (CRLCC - CGFL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Fédération Francophone de la Cancérologie Digestive, FFCD-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Etablissement français du sang [Bourgogne-France-Comté] (EFS [Bourgogne-France-Comté])-Centre National de la Recherche Scientifique (CNRS)-Centre Hospitalier Régional Universitaire [Besançon] (CHRU Besançon)-Université de Franche-Comté (UFC)-Université de Montpellier (UM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Charles University [Prague], Charles University [Prague]-Institut National de la Santé et de la Recherche Médicale (INSERM), Simon, Marie Francoise, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut Gustave Roussy (IGR)-Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)-Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)-Université de Bourgogne (UB)-Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon)-Centre Régional de Lutte contre le cancer Georges-François Leclerc [Dijon] (UNICANCER/CRLCC-CGFL), UNICANCER-UNICANCER-Institut National de la Santé et de la Recherche Médicale (INSERM)-Fédération Francophone de la Cancérologie Digestive, FFCD-Université de Montpellier (UM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Etablissement français du sang [Bourgogne-Franche-Comté] (EFS [Bourgogne-Franche-Comté])-Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées- Institut Fédératif de Recherche Bio-médicale Institution (IFR150)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des Maladies Métaboliques et Cardiovasculaires ( I2MC ), Université Paul Sabatier - Toulouse 3 ( UPS ) -Hôpital de Rangueil-Institut National de la Santé et de la Recherche Médicale ( INSERM ), PHOTONIQUE ( XLIM-PHOTONIQUE ), XLIM ( XLIM ), Université de Limoges ( UNILIM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université de Limoges ( UNILIM ) -Centre National de la Recherche Scientifique ( CNRS ), Université de Caen Normandie ( UNICAEN ), Normandie Université ( NU ) -Normandie Université ( NU ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Lipides - Nutrition - Cancer (U866) ( LNC ), Université de Bourgogne ( UB ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Ecole Nationale Supérieure de Biologie Appliquée à la Nutrition et à l'Alimentation de Dijon ( ENSBANA ), Charles University [Prague]-Institut National de la Santé et de la Recherche Médicale ( INSERM ), U858 Institut de médecine moléculaire de Rangueil (I2MR), and Institut National de la Santé et de la Recherche Médicale
- Subjects
Lipopolysaccharides ,MESH: Signal Transduction ,MESH: Inflammation ,MESH : Toll-Like Receptor 4 ,Adipose tissue ,MESH : Adipocytes ,MESH : Lipopolysaccharides ,Mice ,chemistry.chemical_compound ,Fibrosis ,Adipocyte ,Adipocytes ,[ SDV.IMM ] Life Sciences [q-bio]/Immunology ,MESH: Obesity ,MESH: Animals ,lcsh:QH301-705.5 ,Mice, Inbred C3H ,Toll-like receptor ,MESH : Diet, High-Fat ,MESH: Toll-Like Receptor 4 ,3. Good health ,MESH: Insulin Resistance ,Adipose Tissue ,MESH: Fibrosis ,MESH : Fibrosis ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,MESH : Obesity ,MESH : Insulin Resistance ,MESH: Adipose Tissue ,Signal Transduction ,medicine.medical_specialty ,[SDV.IMM] Life Sciences [q-bio]/Immunology ,Adipose tissue macrophages ,Biology ,Diet, High-Fat ,MESH : Adipose Tissue ,General Biochemistry, Genetics and Molecular Biology ,Immune system ,MESH : Mice, Inbred C3H ,Internal medicine ,MESH : Mice ,medicine ,Animals ,Humans ,Obesity ,MESH: Mice, Inbred C3H ,MESH: Mice ,MESH: Adipocytes ,Inflammation ,MESH : Signal Transduction ,MESH : Inflammation ,MESH: Humans ,MESH : Endotoxemia ,MESH : Humans ,3T3-L1 ,medicine.disease ,MESH : Disease Models, Animal ,Endotoxemia ,Toll-Like Receptor 4 ,Disease Models, Animal ,MESH: Diet, High-Fat ,Endocrinology ,lcsh:Biology (General) ,chemistry ,MESH: Endotoxemia ,MESH : Animals ,Insulin Resistance ,MESH: Disease Models, Animal ,MESH: Lipopolysaccharides ,Adipocyte hypertrophy - Abstract
International audience; Adipose tissue fibrosis development blocks adipocyte hypertrophy and favors ectopic lipid accumulation. Here, we show that adipose tissue fibrosis is associated with obesity and insulin resistance in humans and mice. Kinetic studies in C3H mice fed a high-fat diet show activation of macrophages and progression of fibrosis along with adipocyte metabolic dysfunction and death. Adipose tissue fibrosis is attenuated by macrophage depletion. Impairment of Toll-like receptor 4 signaling protects mice from obesity-induced fibrosis. The presence of a functional Toll-like receptor 4 on adipose tissue hematopoietic cells is necessary for the initiation of adipose tissue fibrosis. Continuous low-dose infusion of the Toll-like receptor 4 ligand, lipopolysaccharide, promotes adipose tissue fibrosis. Ex vivo, lipopolysaccharide-mediated induction of fibrosis is prevented by antibodies against the profibrotic factor TGFβ1. Together, these results indicate that obesity and endotoxemia favor the development of adipose tissue fibrosis, a condition associated with insulin resistance, through immune cell Toll-like receptor 4.
- Published
- 2014
17. Exercise-like effects by Estrogen-related receptor-gamma in muscle do not prevent insulin resistance in db/db mice
- Author
-
Cedric Moro, Katie Louche, Eun Ran Kim, Pierre Marie Badin, Vikas Yadav, Sabina Lorca, Min Sup Song, Qingchun Tong, Vihang A. Narkar, Isabelle K. Vila, and Danesh H. Sopariwala
- Subjects
0301 basic medicine ,medicine.medical_specialty ,Mice, Obese ,Mice, Transgenic ,030209 endocrinology & metabolism ,Biology ,Article ,03 medical and health sciences ,0302 clinical medicine ,Insulin resistance ,Physical Conditioning, Animal ,Internal medicine ,Diabetes mellitus ,medicine ,Animals ,Myocyte ,Glycolysis ,Muscle, Skeletal ,Multidisciplinary ,Skeletal muscle ,Lipid Metabolism ,medicine.disease ,Mitochondria, Muscle ,Insulin receptor ,030104 developmental biology ,Endocrinology ,medicine.anatomical_structure ,Diabetes Mellitus, Type 2 ,Receptors, Estrogen ,Mitochondrial biogenesis ,biology.protein ,Estrogen-related receptor gamma ,Insulin Resistance ,Oxidation-Reduction - Abstract
Dissecting exercise-mimicking pathways that can replicate the benefits of exercise in obesity and diabetes may lead to promising treatments for metabolic disorders. Muscle estrogen-related receptor gamma (ERRγ) is induced by exercise, and when over-expressed in the skeletal muscle mimics exercise by stimulating glycolytic-to-oxidative myofiber switch, mitochondrial biogenesis and angiogenesis in lean mice. The objective of this study was to test whether muscle ERRγ in obese mice mitigates weight gain and insulin resistance. To do so, ERRγ was selectively over-expressed in the skeletal muscle of obese and diabetic db/db mice. Muscle ERRγ over-expression successfully triggered glycolytic-to-oxidative myofiber switch, increased functional mitochondrial content and boosted vascular supply in the db/db mice. Despite aerobic remodeling, ERRγ surprisingly failed to improve whole-body energy expenditure, block muscle accumulation of triglycerides, toxic diacylglycerols (DAG) and ceramides or suppress muscle PKCε sarcolemmal translocation in db/db mice. Consequently, muscle ERRγ did not mitigate impaired muscle insulin signaling or insulin resistance in these mice. In conclusion, obesity and diabetes in db/db mice are not amenable to selective ERRγ-directed programming of classic exercise-like effects in the skeletal muscle. Other biochemical pathways or integrated whole-body effects of exercise may be critical for resisting diabetes and obesity.
- Published
- 2016
18. A UBE2O-AMPKα2 Axis that Promotes Tumor Initiation and Progression Offers Opportunities for Therapy
- Author
-
James P. Hwang, Mien Chie Hung, Sun Joong Kim, Isabelle K. Vila, Enrique Gonzalez-Billalabeitia, Su Jung Song, Weiya Xia, Goeun Kim, Mi Kyung Park, Yixin Yao, Min Sup Song, and Hye Jin Kim
- Subjects
0301 basic medicine ,Cancer Research ,Ubiquitin-Protein Ligases ,Tumor initiation ,Biology ,Ubiquitin-conjugating enzyme ,AMP-Activated Protein Kinases ,medicine.disease_cause ,Article ,Metastasis ,03 medical and health sciences ,Mice ,Antigens, Neoplasm ,Neoplasms ,medicine ,Animals ,Humans ,PI3K/AKT/mTOR pathway ,Ubiquitin ,TOR Serine-Threonine Kinases ,Ubiquitination ,Oncogenes ,medicine.disease ,Hypoxia-Inducible Factor 1, alpha Subunit ,Blockade ,Neoplasm Proteins ,Mice, Inbred C57BL ,030104 developmental biology ,Oncology ,Immunology ,Ubiquitin-Conjugating Enzymes ,Cancer research ,Disease Progression ,Carcinogenesis ,Tramp - Abstract
UBE2O is localized in the 17q25 locus, which is known to be amplified in human cancers, but its role in tumorigenesis remains undefined. Here we show that Ube2o deletion in MMTV-PyVT or TRAMP mice profoundly impairs tumor initiation, growth, and metastasis, while switching off the metabolic reprogramming of tumor cells. Mechanistically, UBE2O specifically targets AMPKα2 for ubiquitination and degradation, and thereby promotes activation of the mTOR-HIF1α pathway. Notably, inactivation of AMPKα2, but not AMPKα1, abrogates the tumor attenuation caused by UBE2O loss, while treatment with rapamycin or inhibition of HIF1α ablates UBE2O-dependent tumor biology. Finally, pharmacological blockade of UBE2O inhibits tumorigenesis through the restoration of AMPKα2, suggesting the UBE2O-AMPKα2 axis as a potential cancer therapeutic target.
- Published
- 2016
19. Defective Natriuretic Peptide Receptor Signaling in Skeletal Muscle Links Obesity to Type 2 Diabetes
- Author
-
Marie Adeline Marques, Isabelle K. Vila, Steven R. Smith, Claire Laurens, Jose E. Galgani, Denis R. Joanisse, Dominique Langin, Virginie Bourlier, Geneviève Tavernier, Cedric Moro, Pierre Marie Badin, Arild C. Rustan, Katie Louche, Marine Coué, and Etienne Mouisel
- Subjects
Adult ,Male ,medicine.medical_specialty ,Diet, Reducing ,medicine.drug_class ,Endocrinology, Diabetes and Metabolism ,Type 2 diabetes ,Biology ,Body Mass Index ,Impaired glucose tolerance ,Random Allocation ,Insulin resistance ,Downregulation and upregulation ,Internal medicine ,Glucose Intolerance ,Weight Loss ,Internal Medicine ,medicine ,Natriuretic peptide ,Animals ,Humans ,Obesity ,Muscle, Skeletal ,Cells, Cultured ,Myogenesis ,Skeletal muscle ,Middle Aged ,medicine.disease ,Mice, Mutant Strains ,Specific Pathogen-Free Organisms ,Mice, Inbred C57BL ,Endocrinology ,medicine.anatomical_structure ,Lipotoxicity ,Diabetes Mellitus, Type 2 ,Disease Progression ,Insulin Resistance ,Receptors, Atrial Natriuretic Factor ,Signal Transduction - Abstract
Circulating natriuretic peptide (NP) levels are reduced in obesity and predict the risk of type 2 diabetes (T2D). Since skeletal muscle was recently shown as a key target tissue of NP, we aimed to investigate muscle NP receptor (NPR) expression in the context of obesity and T2D. Muscle NPRA correlated positively with whole-body insulin sensitivity in humans and was strikingly downregulated in obese subjects and recovered in response to diet-induced weight loss. In addition, muscle NP clearance receptor (NPRC) increased in individuals with impaired glucose tolerance and T2D. Similar results were found in obese diabetic mice. Although no acute effect of brain NP (BNP) on insulin sensitivity was observed in lean mice, chronic BNP infusion improved blood glucose control and insulin sensitivity in skeletal muscle of obese and diabetic mice. This occurred in parallel with a reduced lipotoxic pressure in skeletal muscle due to an upregulation of lipid oxidative capacity. In addition, chronic NP treatment in human primary myotubes increased lipid oxidation in a PGC1α-dependent manner and reduced palmitate-induced lipotoxicity. Collectively, our data show that activation of NPRA signaling in skeletal muscle is important for the maintenance of long-term insulin sensitivity and has the potential to treat obesity-related metabolic disorders.
- Published
- 2015
20. O41 Altération de la signalisation aux peptides natriurétiques du muscle squelettique dans l’obésité et le diabète de type 2
- Author
-
Isabelle K. Vila, Dominique Langin, Marie-Adeline Marques, Denis R. Joanisse, Katie Louche, Pierre-Marie Badin, Cedric Moro, and Marine Coué
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction L'obesite et le diabete de type 2 (DT2) se caracterisent par une diminution des niveaux circulants de peptides natriuretiques (PN) chez l'homme. Nous avons recemment demontre une signalisation fonctionnelle des PN dans le muscle squelettique. L'objectif de ce travail est d'etudier l'influence de l'obesite et du DT2 sur la signalisation aux PN chez l'homme et la souris. Materiels et methodes Nous avons mesure l'expression proteique des recepteurs aux PN, biologiquement actif (NPRA) et de clairance (NPRC) dans des biopsies musculaires issues de patients normoponderes ou obeses et dans un modele murin d'obesite/diabete (souris db/db et db/+). Nous avons ensuite etudie l'influence d'une perfusion continue de Brain-NP (BNP) par mini-pompe osmotique pendant 4 semaines chez des souris engraissees pendant 16 semaines. Des mesures de poids, composition corporelle et tolerance au glucose ont ete realisees. Resultats Nos resultats demontrent une correlation positive entre l'expression proteique du NPRA musculaire et la sensibilite a l'insuline ( r =0,51, p p Conclusion Nous demontrons pour la premiere fois que la signalisation musculaire aux PN est associee a la sensibilite a l'insuline et que l'obesite et le DT2 se caracterisent par une diminution de la signalisation musculaire aux PN chez l'homme et la souris. Declaration d’interet Les auteurs declarent ne pas avoir d'interet direct ou indirect (financier ou en nature) avec un organisme prive, industriel ou commercial en relation avec le sujet presente.
- Published
- 2015
21. P257 Amélioration de la tolérance au glucose par les peptides natriurétiques dans des modèles murins d’obésité et de diabète
- Author
-
Isabelle K. Vila, Pierre-Marie Badin, Katie Louche, Dominique Langin, Cedric Moro, Marie-Adeline Marques, and Marine Coué
- Subjects
Endocrinology ,Endocrinology, Diabetes and Metabolism ,Internal Medicine ,General Medicine - Abstract
Introduction L’obesite et le diabete de type 2 (DT2) se caracterisent par une diminution des niveaux circulants de peptides natriuretiques (PN) chez l’homme. Les PN jouent un role important dans la regulation de differentes voies metaboliques. L’objectif de ce travail est d’etudier le lien entre deficit en PN, obesite et DT2 dans differents modeles murins. Materiels et methodes Nous avons mesure le niveau d’expression proteique des recepteurs aux PN (NPRA et C) par Western blot dans un modele murin d’obesite/diabete genetique (souris db/db et db/+). Nous avons ensuite etudie l’influence d’une perfusion continue de brain-NP (BNP) par mini-pompe alzet pendant 4 semaines chez des souris db/db a 10 ng/kg/min et chez des souris engraissees par un regime hyperlipidique pendant 16 semaines a 50 ng/kg/min. Des mesures de poids, de composition corporelle, et de tolerances a l’insuline et au glucose ont ete realisees. Resultats Nos resultats montrent une diminution tres nette du ratio NPRA/NPRC (recepteur biologiquement actif/recepteur de clairance) dans les muscles, le foie, et les tissus adipeux blancs et bruns des souris db/db par rapport aux db/+. De plus, le BNP a faible dose diminue significativement la glycemie a jeun, l’hemoglobine glyquee (HbA1c) et ameliore l’insulinosensibilite chez les souris db/db independamment du poids corporel. A plus forte dose, le BNP previent la prise de poids et la degradation de la tolerance au glucose en regime hyperlipidique. Conclusion Nos donnees suggerent que l’obesite est associee a une perte de sensibilite des principaux organes metaboliques aux PN, ce qui pourrait contribuer au developpement du DT2. Une elevation des taux circulant de PN ameliore le controle glycemique et la tolerance au glucose chez des souris obeses et diabetiques.
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.