1. Recursive Reasoning Graph for Multi-Agent Reinforcement Learning
- Author
-
Ma, Xiaobai, Isele, David, Gupta, Jayesh K., Fujimura, Kikuo, and Kochenderfer, Mykel J.
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,Artificial Intelligence (cs.AI) ,Computer Science - Artificial Intelligence ,Computer Science - Multiagent Systems ,General Medicine ,Machine Learning (cs.LG) ,Multiagent Systems (cs.MA) - Abstract
Multi-agent reinforcement learning (MARL) provides an efficient way for simultaneously learning policies for multiple agents interacting with each other. However, in scenarios requiring complex interactions, existing algorithms can suffer from an inability to accurately anticipate the influence of self-actions on other agents. Incorporating an ability to reason about other agents' potential responses can allow an agent to formulate more effective strategies. This paper adopts a recursive reasoning model in a centralized-training-decentralized-execution framework to help learning agents better cooperate with or compete against others. The proposed algorithm, referred to as the Recursive Reasoning Graph (R2G), shows state-of-the-art performance on multiple multi-agent particle and robotics games., AAAI 2022
- Published
- 2022