1. Impaired Clearance and Enhanced Pulmonary Inflammatory/Fibrotic Response to Carbon Nanotubes in Myeloperoxidase-Deficient Mice
- Author
-
Meade, Aidan, Shvedova, Anna, Kapralov, Alexandr, Hong Feng, Wei, Kisin, Elena, Murray, Ashley, Mercer, Robert, St. Croix, Claudette, Lang, Megan, Watkins, Simon, Konduru, Nagarjun, Allen, Brett, Conroy, Jennifer, Kotchey, Gregg, Mohamed, Bashir, Volkov, Yuri, Star, Alexander, Fadeel, Bengt, and Kagan, Valerian
- Subjects
biomedical applications ,Physics ,Nanotechnology ,Pulmonary ,Fibrotic Response ,Inflammatory - Abstract
Advancement of biomedical applications of carbonaceous nanomaterials is hampered by their biopersistence and proinflammatory action in vivo. Here, we used myeloperoxidase knockout B6.129X1-MPO (MPO k/o) mice and showed that oxidation and clearance of single walled carbon nanotubes (SWCNT) from the lungs of these animals after pharyngeal aspiration was markedly less effective whereas the inflammatory response was more robust than in wild-type C57Bl/6 mice. Our results provide direct evidence for the participation of MPO – one of the key-orchestrators of inflammatory response – in the in vivo pulmonary oxidative biodegradation of SWCNT and suggest new ways to control the biopersistence of nanomaterials through genetic or pharmacological manipulations.
- Published
- 2012