1. Additional file 2 of Machine learning-assisted identification of bioindicators predicts medium-chain carboxylate production performance of an anaerobic mixed culture
- Author
-
Liu, Bin, Str��uber, Heike, Saraiva, Jo��o, Harms, Hauke, Silva, Sandra Godinho, Kasmanas, Jonas Coelho, Kleinsteuber, Sabine, and Nunes da Rocha, Ulisses
- Abstract
Additional file 1: Figure S1. Gas production of bioreactors. Figure S2. Biomass production of bioreactors and correlation analysis. Figure S3. Microbial community composition profiles of bioreactors. Figure S4. Alpha diversity metrics of bioreactor communities. Figure S5. Predictive performance of three machine learning algorithms using HRT bioindicators. Figure S6. Predictive performance of three machine learning algorithms using non-HRT bioindicators for considering community assembly caused by time. Figure S7. Prediction results of C6 and C8 productivities using non-HRT bioindicators for considering community assembly caused by time. Figure S8. Prediction results of C6 and C8 productivities for all samples in the four HRT phases using HRT bioindicators. Figure S9. Prediction results of C6 and C8 productivities for all samples in the four HRT phases using non-HRT bioindicators for considering community assembly caused by time. Figure S10. Random forest feature importance of A-HRT bioindicators and B-HRT bioindicators used to predict C6 and C8 productivities. Figure S11. Random forest feature importance of the non-HRT bioindicators used to predict C6 and C8 productivities. Figure S12. Metabolic pathways involved in converting lactate and xylan to n-caproate and n-caprylate. Figure S13. Correlation network of environmental factors, process performance and microbial community. Figure S14. Prediction results of C6 and C8 productivities for all samples in the four HRT phases using the four ASVs of HRT bioindicators irrespective of time. Figure S15. Reducing HRT increases abundances of HRT bioindicators driving the catabolism of xylan and lactate to n-caproate and n-caprylate. Figure S16. Alpha rarefaction curves. Figure S17. Workflow of the random forest classification analysis. Figure S18. Workflow of a two-step random forest regression analysis. Table S1. Mean carboxylate yields (i.e., C mole product to substrate ratios) at HRTs of 8 days and 2 days (stable production period). Table S2. Explained variances of the training set in the regression-based prediction of process parameters using A-HRT bioindicators and B-HRT bioindicators. Table S3. Explained variances of the training set in the regression-based prediction of process parameters using non-HRT bioindicators for considering community assembly caused by time. Table S4. Growth medium used for the reactor operation. Table S5. Daily feeding of bioreactors A and B during the four HRT phases.
- Published
- 2022
- Full Text
- View/download PDF