11 results on '"Laura Aragoneses-Fenoll"'
Search Results
2. CD28 is expressed by macrophages with anti-inflammatory potential and limits their T-cell activating capacity
- Author
-
Laura Aragoneses-Fenoll, Pilar Portolés, S. Fuentelsaz-Romero, Bárbara Alonso, Angel L. Corbí, Ángeles Domínguez-Soto, Concha Nieto, José M. Rojo, Miriam Simón-Fuentes, Lizbeth Estrada-Capetillo, Amaya Puig-Kröger, Instituto de Salud Carlos III, Ministerio de Ciencia, Innovación y Universidades (España), Red de Investigación en Inflamación y Enfermedades Reumáticas (España), Estrada-Capetillo, Lizbeth [0000-0003-1792-6566], Aragoneses-Fenoll, Laura [0000-0002-1058-9707], Domínguez-Soto, Ángeles [0000-0003-1299-5992], Fuentelsaz-Romero S. [0000-0002-7159-6636], Nieto, Concha [0000-0003-0790-3440], Simón-Fuentes, Miriam [0000-0002-8503-0174], Alonso, Bárbara [0000-0001-9973-4431], Portolés, Pilar [0000-0001-6973-0835], Corbí, Angel L. [0000-0003-1980-5733], Rojo, José María [0000-0001-9032-0072], Puig-Kröger, Amaya [0000-0003-2943-9757], Ministerio de Economía y Competitividad (España), Red de Investigación Cooperativa en Enfermedades Reumáticas (España), Unión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF), Consejo Superior de Investigaciones Científicas (España), Estrada-Capetillo, Lizbeth, Aragoneses-Fenoll, Laura, Domínguez-Soto, Ángeles, Fuentelsaz-Romero S., Nieto, Concha, Simón-Fuentes, Miriam, Alonso, Bárbara, Portolés, Pilar, Corbí, Angel L., Rojo, José María, and Puig-Kröger, Amaya
- Subjects
0301 basic medicine ,CD28 expression ,Macrophage ,T cell ,T-Lymphocytes ,Immunology ,MafB Transcription Factor ,Macrophage polarization ,Gene Expression ,Inflammation ,Biology ,Lymphocyte Activation ,Transcriptome ,Arthritis, Rheumatoid ,03 medical and health sciences ,0302 clinical medicine ,CD28 Antigens ,Gene expression ,T-cell activation ,medicine ,Immunology and Allergy ,Animals ,Humans ,Cells, Cultured ,Mice, Knockout ,Gene Expression Profiling ,Macrophages ,CD28 ,Cell biology ,Activins ,Mice, Inbred C57BL ,030104 developmental biology ,medicine.anatomical_structure ,MAFB ,medicine.symptom ,030215 immunology ,Signal Transduction - Abstract
11 p.-5 fig., CD28 expression is generally considered to be T lymphocyte specific. We have previously shown CD28 mRNA expression in M-CSF-dependent anti-inflammatory monocytederived macrophages (M-MØ), and now demonstrate that CD28 cell surface expression is higher in M-MØ than in GM-CSF-dependent macrophages, and that macrophage CD28 expression is regulated by MAFB and activin A. In vivo, CD28 was found in tumorassociated macrophages and, to a lower extent, in pro-inflammatory synovial fluid macrophages from rheumatoid arthritis patients. Analysis of mouse macrophages confirmed Cd28 expression in bone-marrow derived M-MØ. Indeed, anti-CD28 antibodies triggered ERK1/2 phosphorylation in mouse M-MØ. At the functional level, Cd28KO M-MØ exhibited a significantly higher capacity to activate the OVA-specific proliferation of OT-II CD4+ T cells than WT M-MØ, as well as enhanced LPS-induced IL-6 production. Besides, the Cd28KO M-MØ transcriptome was significantly different from WT M-MØ regarding the expression IFN response, inflammatory response, and TGF-β signaling related gene sets. Therefore, defective CD28 expression in mouse macrophages associates to changes in gene expression profile, what might contribute to the altered functionality displayed by Cd28KO M-MØ. Thus, CD28 expression appears as a hallmark of anti-inflammatory macrophages and might be a target for immunotherapy., This work was supported by grants PI17/00037 to APK, grants AES-PI13/02153 and AESIPI16CIII/00012 from Acción Estratégica de Salud del Instituto de Salud Carlos III to PP, grant SAF2017-83785-R from Ministerio de Economía y Competitividad to ALC, and Red de Investigación en Enfermedades Reumáticas, RIER RD16/0012/0007 to APK,and cofinanced by the European Regional Development Fund “A way to achieve Europe” (ERDF).
- Published
- 2020
3. ICOS deficiency hampers the homeostasis, development and function of NK cells
- Author
-
María Luisa Gaspar, Laura Aragoneses-Fenoll, Belén de Andrés, María Montes-Casado, Pilar Portolés, José M. Rojo, Gloria Ojeda, Daniel López, Umberto Dianzani, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad (España), Unión Europea. Fondo Europeo de Desarrollo Regional (FEDER/ERDF), Italian Association for Cancer Research, Associazione Italiana per la Ricerca sul Cancro, Fondazione ONLUS Amici di Jean, Montes-Casado, María, Aragoneses-Fenoll, Laura, López, Daniel, de Andres, Belen, Gaspar, Maria Luisa, Rojo, José María, Portolés, Pilar, Montes-Casado, María [0000-0002-0350-7734], Aragoneses-Fenoll, Laura [0000-0002-1058-9707], López, Daniel [0000-0003-0268-5878], de Andres, Belen [0000-0002-7391-2823], Gaspar, Maria Luisa [0000-0001-9858-3862], Rojo, José María [0000-0001-9032-0072], and Portolés, Pilar [0000-0001-6973-0835]
- Subjects
0301 basic medicine ,Physiology ,Cellular differentiation ,Cell ,Apoptosis ,NK cells ,Stem cell marker ,Lymphocyte Activation ,Pathology and Laboratory Medicine ,Mice ,0302 clinical medicine ,Cell Signaling ,Immune Physiology ,Cellular types ,Vaccinia ,Homeostasis ,Phosphorylation ,Extracellular Signal-Regulated MAP Kinases ,Immune Response ,Mice, Knockout ,Innate Immune System ,Multidisciplinary ,CD11b Antigen ,biology ,Immune cells ,Cell Differentiation ,Animal Models ,Poxviruses ,Vaccinia Virus ,Cell biology ,Killer Cells, Natural ,medicine.anatomical_structure ,Integrin alpha M ,Experimental Organism Systems ,Medical Microbiology ,Viral Pathogens ,Viruses ,Medicine ,White blood cells ,Cytokines ,Pathogens ,Signal Transduction ,Research Article ,Cell signaling ,Blood cells ,Science ,Immunology ,Mouse Models ,Research and Analysis Methods ,Microbiology ,Inducible T-Cell Co-Stimulator Protein ,03 medical and health sciences ,Inducible T-Cell Co-Stimulator Ligand ,Interferon-gamma ,Immune system ,Model Organisms ,medicine ,Animals ,Microbial Pathogens ,Medicine and health sciences ,Innate immune system ,Biology and life sciences ,Organisms ,Germinal center ,Molecular Development ,Tumor Necrosis Factor Receptor Superfamily, Member 7 ,Mice, Inbred C57BL ,030104 developmental biology ,Poly I-C ,Animal cells ,Immune System ,biology.protein ,Animal Studies ,Interleukin-2 ,Physiological Processes ,DNA viruses ,Proto-Oncogene Proteins c-akt ,Spleen ,030215 immunology ,Developmental Biology - Abstract
26 p.-8 fig., Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation., This work was supported by grants from the Acción Estratégica en Salud (Instituto de Salud Carlos III, ISCIII, MINECO, Spain) (PI13/02153 and PI16CIII/00012 to P.P.; PI13/01809 to J.M.R.; and PI14/00049 to BdA); grants from Ministerio de Economía y Competitividad MINECO/FEDER, Spain (SAF2015-70880-R to M.L.G. and SAF2014-58052 to D.L.); and grants from Associazione Italiana per la Ricerca sul Cancro, AIRC, Milan (IG20714) and the Fondazione Amici di Jean, Torino, Italy (to U.D.).
- Published
- 2019
4. T-Cell-Specific Loss of the PI-3-Kinase p110α Catalytic Subunit Results in Enhanced Cytokine Production and Antitumor Response
- Author
-
José M. Rojo, Laura Aragoneses-Fenoll, María Montes-Casado, Umberto Dianzani, Pilar Portolés, Yeny Acosta-Ampudia, Gloria Ojeda, Ministerio de Economía, Industria y Competitividad (España), and Italian Association for Cancer Research
- Subjects
lcsh:Immunologic diseases. Allergy ,0301 basic medicine ,Class I Phosphatidylinositol 3-Kinases ,MAP Kinase Signaling System ,CD3 ,medicine.medical_treatment ,T cell ,Immunology ,T lymphocytes ,chemical and pharmacologic phenomena ,CD28 costimulation ,CD8-Positive T-Lymphocytes ,PI3K ,T-Lymphocytes, Regulatory ,03 medical and health sciences ,Interferon-gamma ,Mice ,0302 clinical medicine ,Immune system ,Antigen ,melanoma ,medicine ,Immunology and Allergy ,Animals ,Extracellular Signal-Regulated MAP Kinases ,Melanoma ,Original Research ,anti-KLH response ,Mice, Knockout ,Immunity, Cellular ,biology ,Chemistry ,T-cell receptor ,CD28 ,Neoplasms, Experimental ,Molecular biology ,PI3-kinase alpha subunit ,030104 developmental biology ,Cytokine ,medicine.anatomical_structure ,030220 oncology & carcinogenesis ,biology.protein ,Anti-KLH response ,lcsh:RC581-607 ,Proto-Oncogene Proteins c-akt ,CD8 - Abstract
Class IA phosphatidylinositol 3-kinase (PI3K) catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α-/-ΔT) were used. p110α-/-ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. "In vitro," TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α-/-ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α-/-ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α-/-ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α-/-ΔT iTreg cells was diminished. Also, p110α-/-ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH) IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α-/-ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α-/-ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity. The study was supported by “Acción Estratégica en Salud, Plan Estatal I + D + I,” Ministerio de Economía, Industria y Competitividad (MINECO, Spain) under Grants PI13/01809 (to JR), and Grants PI13/02153 and PI16CIII/00012 (to PP); and by Associazione Italiana Ricerca sul Cancro (AIRC, Milan) under Grant IG14430 and Fondazione Amici di Jean (to UD). Sí
- Published
- 2018
5. AM3, a natural glycoconjugate, induces the functional maturation of human dendritic cells
- Author
-
Laura Aragoneses-Fenoll, M Trapero, Samuel Martín-Vílchez, Francisca Molina-Jiménez, Ricardo Moreno-Otero, Angel L. Corbí, Salvador González, Pedro Roda-Navarro, Manuel López-Cabrera, J P Pivel, Yolanda Rodríguez-Muñoz, Pedro L. Majano, Ignacio Benedicto, José Luis Alonso-Lebrero, and Paloma Sanz-Cameno
- Subjects
Pharmacology ,CD86 ,Chemokine ,medicine.medical_treatment ,Dendritic cell ,Biology ,Chemokine receptor ,Immune system ,Cytokine ,Immunology ,medicine ,biology.protein ,Receptor ,CD80 - Abstract
Background and purpose: Dendritic cells (DCs) are dedicated antigen-presenting cells able to initiate specific immune responses and their maturation is critical for the induction of antigen-specific T-lymphocyte responses. Here, we have investigated the effects of Inmunoferon-active principle (AM3), the active agent of a commercial immunomodulatory drug, on human monocyte-derived DCs (MDDCs). Experimental approach: MDDCs derived from healthy and hepatitis C virus (HCV)-infected patients were stimulated with AM3. We analysed the expression of cell surface proteins by flow cytometry, that of cytokine production by ELISA, and the expression of chemokines and chemokine receptors by RNase protection assays. T-lymphocyte proliferation was assessed in mixed lymphocyte reactions, protein expression by western blot and luciferase-based reporter methods, and Toll-like receptor (TLR)-blocking antibodies were employed to analyse TLR activity. Key results: In MDDCs, AM3 induced or enhanced expression of CD54, CD83, CD86, HLA-DR, chemokines and chemokine receptors, interleukin (IL)-12p70 and IL-10. Furthermore, AM3 stimulated MDDCs to increase proliferation of allogenic T cells. AM3 triggered nuclear translocation of NF-κB and phosphorylation of p38 mitogen-activated protein kinase. AM3 promoted NF-κB activation in a TLR-4-dependent manner, and blocking TLR-4 activity attenuated the enhanced expression of CD80, CD83 and CD86 induced by AM3. AM3 enhanced the expression of maturation-associated markers in MDDCs from HCV-infected patients and increased the proliferation of T lymphocytes induced by these MDDCs. Conclusions and implications: These results underline the effects of AM3 in promoting maturation of MDDCs and suggest that AM3 might be useful in regulating immune responses in pathophysiological situations requiring DC maturation.
- Published
- 2008
- Full Text
- View/download PDF
6. Dendritic cells: still a promising tool for cancer immunotherapy
- Author
-
Laura Aragoneses-Fenoll and Angel L. Corbí
- Subjects
Cancer Research ,business.industry ,medicine.medical_treatment ,Dendritic Cells ,General Medicine ,Immunotherapy ,Dendritic cell ,Immunotherapy, Adoptive ,Human system ,Vaccination ,Tolerance induction ,Immune system ,Oncology ,Cancer immunotherapy ,Neoplasms ,Immunology ,medicine ,Humans ,Effector functions ,business - Abstract
Dendritic cells are bone marrow-derived professional antigen-presenting cells that exert critical functions in innate and adaptive immune responses. Depending on their functional maturation status, dendritic cells trigger primary immune responses or promote immunological tolerance. This functional ambivalence has taken dendritic cells into the focus of attention of immunotherapy protocols for both vaccination and tolerance induction. The capacity of dendritic cells to generate anti-tumour immune responses has already been demonstrated, and numerous clinical trials are currently in progress to assess their therapeutic potential. In the present review we will briefly outline the types and effector functions of dendritic cells in the human system, and summarise the present state of anti-tumour immunotherapy protocols, emphasising the most relevant parameters currently evaluated in preclinical and clinical assays.
- Published
- 2007
- Full Text
- View/download PDF
7. Intravenous immunoglobulin promotes antitumor responses by modulating macrophage polarization
- Author
-
Pedro Berraondo, Nico van Rooijen, Ángeles Domínguez-Soto, Mateo de las Casas-Engel, Carmen Sánchez-Torres, David Sancho, Rafael Bragado, Laura Aragoneses-Fenoll, María L. Toribio, José Medina-Echeverz, Silvia Sánchez-Ramón, Pierre Bruhns, María A. Moro, Antonio Castrillo, Angel L. Corbí, Isabel Cuartero, Enrique Martin-Gayo, Ministerio de Economía y Competitividad (España), Fundación Genoma España, Instituto de Salud Carlos III, Red de Investigación en Inflamación y Enfermedades Reumáticas (España), Comunidad de Madrid, European Commission, Centro de Investigaciones Biológicas (CSIC), Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Instituto de Investigación Sanitaria Fundación Jiménez Diaz (Madrid), Center for Applied Medical Research [Plamplona] (CIMA), Universidad de Navarra [Pamplona] (UNAV), Centro de Biología Molecular Severo Ochoa (CBMSO), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Department of Molecular Cell Biology [Amsterdam UMC], Vrije Universiteit Medical Centre (VUMC), Vrije Universiteit Amsterdam [Amsterdam] (VU)-Vrije Universiteit Amsterdam [Amsterdam] (VU), Universidad Complutense de Madrid [Madrid] (UCM), Instituto de Investigaciones Biomédicas Alberto Sols [Madrid, Spain] (IIBM), Unidad Asociada de Biomedicina, Universidad de Las Palmas de Gran Canarias, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Anticorps en Thérapie et Pathologie, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Immunology, Hospital General Universitario Gregorio Marañón, This work was supported by grants from Ministerio de Economía y Competitividad (SAF2011-23801), Genoma España (Mecanismos moleculares en enfermedades inflamatorias crónicas y autoinmunes project), Instituto de Salud Carlos III (Red de Investigación en Enfermedades Reumáticas), and Comunidad Autónoma de Madrid/Fondo Europeo de Desarrollo Regional (Rheumatoid Arthritis: Physiopathology Mechanisms Program) (to A.L.C.), and Ministerio de Economía y Competitividad Grant SAF2010-15106 (to M.L.T.). M.d.l.C.-E. is supported by a Formación de Personal Investigador predoctoral fellowship (BES-2009-021465) from Ministerio de Economía y Competitividad., Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Instituto de Investigación Sanitaria Fundación Jiménez Diaz [Madrid] (IIS-FJD), Universidad Autónoma de Madrid (UAM)-Fundacion Jimenez Diaz [Madrid] (FJD), Centro de Biología Molecular Severo Ochoa [Madrid] (CBMSO), Universidad Autónoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Universidad Complutense de Madrid = Complutense University of Madrid [Madrid] (UCM), Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Molecular cell biology and Immunology, CCA - Innovative therapy, Universidad Autonoma de Madrid (UAM)-Fundacion Jimenez Diaz [Madrid] (FJD), Universidad Autonoma de Madrid (UAM)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), and Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad Autonoma de Madrid (UAM)
- Subjects
MESH: Signal Transduction ,MESH: Tumor Burden ,Lung Neoplasms ,medicine.medical_treatment ,Melanoma, Experimental ,Mice ,0302 clinical medicine ,hemic and lymphatic diseases ,Immunology and Allergy ,Macrophage ,MESH: Animals ,MESH: Immunoglobulins, Intravenous ,Lung ,Cells, Cultured ,0303 health sciences ,MESH: Cytokines ,biology ,MESH: Immunologic Factors ,Immunoglobulins, Intravenous ,Cell Differentiation ,MESH: Gene Expression Regulation, Neoplastic ,Tumor Burden ,3. Good health ,Gene Expression Regulation, Neoplastic ,MESH: Melanoma, Experimental ,Cytokine ,Cytokines ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,Antibody ,Signal Transduction ,MESH: Cells, Cultured ,MESH: Cell Differentiation ,Immunology ,Macrophage polarization ,Antineoplastic Agents ,MESH: Receptors, IgE ,CD16 ,MESH: Receptors, IgG ,Proinflammatory cytokine ,03 medical and health sciences ,In vivo ,medicine ,Animals ,Humans ,Immunologic Factors ,MESH: Lung ,MESH: Mice ,030304 developmental biology ,MESH: Humans ,Receptors, IgE ,Macrophages ,Receptors, IgG ,MESH: Macrophages ,MESH: Lung Neoplasms ,Tumor progression ,biology.protein ,MESH: Antineoplastic Agents ,Neoplasm Transplantation ,MESH: Neoplasm Transplantation ,030215 immunology - Abstract
et al., Intravenous Igs (IVIg) therapy is widely used as an immunomodulatory strategy in inflammatory pathologies and is suggested to promote cancer regression. Because progression of tumors depends on their ability to redirect the polarization state of tumorassociated macrophages (from M1/immunogenic/proinflammatory to M2/anti-inflammatory), we have evaluated whether IVIg limits tumor progression and dissemination through modulation of macrophage polarization. In vitro, IVIg inhibited proinflammatory cytokine production from M1 macrophages and induced a M2-To-M1 polarization switch on human and murine M2 macrophages. In vivo, IVIg modified the polarization of tumor-associated myeloid cells in a Fcεr1γ chain-dependent manner, modulated cytokine blood levels in tumor-bearing animals, and impaired tumor progression via FcγRIII (CD16), FcγRIV, and FcRγ engagement, the latter two effects being macrophage mediated. Therefore, IVIg immunomodulatory activity is dependent on the polarization state of the responding macrophages, and its ability to trigger a M2-To-M1 macrophage polarization switch might be therapeutically useful in cancer, in which proinflammatory or immunogenic functions should be promoted., This work was supported by grants from Ministerio de Economía y Competitividad (SAF2011-23801), Genoma España (Mecanismos moleculares en enfermedades inflamatorias crónicas y autoinmunes project), Instituto de Salud Carlos III (Red de Investigación en Enfermedades Reumáticas), and Comunidad Autónoma de Madrid/Fondo Europeo de Desarrollo Regional (Rheumatoid Arthritis: Physiopathology Mechanisms Program) (to A.L.C.), and Ministerio de Economía y Competitividad Grant SAF2010-15106 (to M.L.T.). M.d.l.C.-E. is supported by a Formación de Personal Investigador predoctoral fellowship (BES-2009-021465) from Ministerio de Economía y Competitividad.
- Published
- 2014
- Full Text
- View/download PDF
8. Estradiol impairs the Th17 immune response against Candida albicans
- Author
-
César Nombela, Laura Aragoneses-Fenoll, Gema Romera, Christelle Bourgeois, Karl Kuchler, Rosalía Diez-Orejas, Angel L. Corbí, Miguel Relloso, José Luis Rodríguez-Fernández, Sandra Lasarte, and M. Ángeles Muñoz-Fernández
- Subjects
Ovariectomy ,Immunology ,Antigen presentation ,Estrous Cycle ,Biology ,Microbiology ,Mice ,Immune system ,In vivo ,Cell Movement ,Candida albicans ,Hormone replacement therapy (male-to-female) ,medicine ,Immunology and Allergy ,Animals ,Pathogen ,Antigen Presentation ,Mice, Inbred BALB C ,Estradiol ,Candidiasis ,Cell Biology ,Dendritic Cells ,medicine.disease ,biology.organism_classification ,Th17 Cells ,Female ,Systemic candidiasis ,Disease Susceptibility ,hormones, hormone substitutes, and hormone antagonists ,Ex vivo - Abstract
Candida albicans is a commensal opportunistic pathogen that is also a member of gastrointestinal and reproductive tract microbiota. Exogenous factors, such as oral contraceptives, hormone replacement therapy, and estradiol, may affect susceptibility to Candida infection, although the mechanisms involved in this process have not been elucidated. We used a systemic candidiasis model to investigate how estradiol confers susceptibility to infection. We report that estradiol increases mouse susceptibility to systemic candidiasis, as in vivo and ex vivo estradiol-treated DCs were less efficient at up-regulating antigen-presenting machinery, pathogen killing, migration, IL-23 production, and triggering of the Th17 immune response. Based on these results, we propose that estradiol impairs DC function, thus explaining the increased susceptibility to infection during estrus.
- Published
- 2011
9. IF‐S, a phosphorylated alpha glucomannan polysaccharide, induces functional human dendritic cell maturation
- Author
-
M. Trapero, Paloma Sanz-Cameno, Francisca Molina-Jiménez, Salvador Gonzalez, Pedro Roda-Navarro, Ricardo Moreno-Otero, Yolanda Rodriguez, Laura Aragoneses-Fenoll, Samuel Martín-Vílchez, José Luis Alonso-Lebrero, Manuel López-Cabrera, Angel L. Corbí, and Pedro L. Majano
- Subjects
chemistry.chemical_classification ,Alpha (ethology) ,Glucomannan ,Dendritic cell ,Polysaccharide ,Biochemistry ,Cell biology ,chemistry.chemical_compound ,chemistry ,Immunology ,Genetics ,Phosphorylation ,Molecular Biology ,Biotechnology - Published
- 2008
- Full Text
- View/download PDF
10. The presence of an alpha glucomannan polysaccharide (IF‐S) activates NFkB and p38 in hMDDC
- Author
-
Laura Aragoneses-Fenoll, Yolanda Rodriguez, Maria Trapero, Pedro Roda-Navarro, Francisca Molina Jimenez, José Luis Alonso-Lebrero, Pedro L. Majano, Manuel López-Cabrera, Paloma Sanz-Cameno, Samuel Martín-Vílchez, Ricardo Moreno-Otero, and Salvador Gonzalez
- Subjects
chemistry.chemical_classification ,chemistry.chemical_compound ,chemistry ,p38 mitogen-activated protein kinases ,Genetics ,Alpha (ethology) ,Glucomannan ,Polysaccharide ,Molecular Biology ,Biochemistry ,Molecular biology ,Biotechnology - Published
- 2008
- Full Text
- View/download PDF
11. The DC-SIGN–related lectin LSECtin mediates antigen capture and pathogen binding by human myeloid cells
- Author
-
Pilar M. Muñoz, Mercedes Zubiaur, Laura Aragoneses-Fenoll, María L. Toribio, Ángeles Domínguez-Soto, María Colmenares, Enrique Martin-Gayo, Angel L. Corbí, Francesc E. Borràs, M. Naranjo-Gómez, Lorena Martínez-Prats, and Rafael Delgado
- Subjects
Gene isoform ,tumor ,MCSF ,media_common.quotation_subject ,Immunology ,Biochemistry ,Antigen ,Blood-Borne Pathogens ,Humans ,Protein Isoforms ,Lectins, C-Type ,Myeloid Cells ,RNA, Messenger ,Antigens ,macrophagic ,Receptor ,Internalization ,Interleukin 4 ,media_common ,biology ,Macrophages ,CD23 ,Dendritic Cells ,Cell Biology ,Hematology ,Molecular biology ,Endocytosis ,Cell biology ,DC-SIGN ,Endothelial stem cell ,inflammation ,biology.protein - Abstract
7 Figures. Conflict-of-interest disclosure: The authors declare no competing financial interests. The publication costs of this article were defrayed in part by page charge payment. Therefore, and solely to indicate this fact, this article is hereby marked ‘‘advertisement’’ in accordance with 18 USC section 1734., Liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin [CLEC4G]) is a C-type lectin encoded within the liver/lymph node–specific intercellular adhesion molecule-3–grabbing nonintegrin (L-SIGN)/dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin (DC-SIGN)/CD23 gene cluster. LSECtin expression has been previously described as restricted to sinusoidal endothelial cells of the liver and lymph node. We now report LSECtin expression in human peripheral blood and thymic dendritic cells isolated ex vivo. LSECtin is also detected in monocyte-derived macrophages and dendritic cells at the RNA and protein level. In vitro, interleukin-4 (IL-4) induces the expression of 3 LSECtin alternatively spliced isoforms, including a potentially soluble form (Δ2 isoform) and a shorter version of the prototypic molecule (Δ3/4 isoform). LSECtin functions as a pathogen receptor, because its expression confers Ebola virus–binding capacity to leukemic cells. Sugar-binding studies indicate that LSECtin specifically recognizes N-acetyl-glucosamine, whereas no LSECtin binding to Mannan- or N-acetyl-galactosamine–containing matrices are observed. Antibody or ligand-mediated engagement triggers a rapid internalization of LSECtin,which is dependent on tyrosine and diglutamic-containing motifs within the cytoplasmic tail. Therefore, LSECtin is a pathogen-associated molecular pattern receptor in human myeloid cells. In addition, our results suggest that LSECtin participates in antigen uptake and internalization, and might be a suitable target molecule in vaccination strategies., This work was supported by the Ministerio de Educación y Ciencia (grants SAF2005-0021, AGL2004-02148-ALI, and GEN2003-20649-C06-01/NAC) and Fundación para la Investigación y Prevención del SIDA en Espan˜a (FIPSE 36422/03) to ALC. A.D.S. was supported by a FPI predoctoral grant (BES2004-4405) from Ministerio de Educación y Ciencia (Spain). Authorship Contribution: A.D.S. designed the research and performed the experiments; L.A.F., E.G.M., L.M.P., and P.M. performed the research (lipid raft preparation, thymic cell separation, Ebolabinding assays); M.L.T., M.C., M.Z., R.D., and F.B. provided reagents and supervised individual experiments; and A.L.C. supervised research and wrote the paper.
- Published
- 2007
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.