1. Learning Goal-Conditioned Policies Offline with Self-Supervised Reward Shaping
- Author
-
Mezghani, Lina, Sukhbaatar, Sainbayar, Bojanowski, Piotr, Lazaric, Alessandro, Alahari, Karteek, Apprentissage de modèles à partir de données massives (Thoth), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Meta AI, ANR-18-CE23-0011, and ANR-18-CE23-0011,AVENUE,Réseau de mémoire visuelle pour l'interprétation de scènes(2018)
- Subjects
FOS: Computer and information sciences ,Computer Science - Robotics ,Computer Science - Machine Learning ,Self-Supervised Learning ,Artificial Intelligence (cs.AI) ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Computer Science - Artificial Intelligence ,Goal-Conditioned RL ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Offline RL ,Robotics (cs.RO) ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Machine Learning (cs.LG) - Abstract
Developing agents that can execute multiple skills by learning from pre-collected datasets is an important problem in robotics, where online interaction with the environment is extremely time-consuming. Moreover, manually designing reward functions for every single desired skill is prohibitive. Prior works targeted these challenges by learning goal-conditioned policies from offline datasets without manually specified rewards, through hindsight relabelling. These methods suffer from the issue of sparsity of rewards, and fail at long-horizon tasks. In this work, we propose a novel self-supervised learning phase on the pre-collected dataset to understand the structure and the dynamics of the model, and shape a dense reward function for learning policies offline. We evaluate our method on three continuous control tasks, and show that our model significantly outperforms existing approaches, especially on tasks that involve long-term planning., Comment: Code: https://github.com/facebookresearch/go-fresh
- Published
- 2023
- Full Text
- View/download PDF