44 results on '"Mounim A. El Yacoubi"'
Search Results
2. Label Enhancement-Based Multiscale Transformer for Palm-Vein Recognition
- Author
-
Huafeng Qin, Changqing Gong, Yantao Li, Xinbo Gao, and Mounim A. El-Yacoubi
- Subjects
Electrical and Electronic Engineering ,Instrumentation - Published
- 2023
- Full Text
- View/download PDF
3. Detection of Alzheimer Disease on Online Handwriting Using 1D Convolutional Neural Network
- Author
-
Quang Dao, Mounim A. El-Yacoubi, and Anne-Sophie Rigaud
- Subjects
General Computer Science ,General Engineering ,General Materials Science ,Electrical and Electronic Engineering - Published
- 2023
- Full Text
- View/download PDF
4. Adaptive Deep Feature Fusion for Continuous Authentication with Data Augmentation
- Author
-
Yantao Li, Li Liu, Huafeng Qin, Shaojiang Deng, Mounim A. El-Yacoubi, and Gang Zhou
- Subjects
Computer Networks and Communications ,Electrical and Electronic Engineering ,Software - Published
- 2022
- Full Text
- View/download PDF
5. Reservoir Computing for Early Stage Alzheimer’s Disease Detection
- Author
-
Nickson Mwamsojo, Frederic Lehmann, Mounim A. El-Yacoubi, Kamel Merghem, Yann Frignac, Badr-Eddine Benkelfat, and Anne-Sophie Rigaud
- Subjects
General Computer Science ,General Engineering ,General Materials Science ,Electrical and Electronic Engineering - Published
- 2022
- Full Text
- View/download PDF
6. GLYFE: review and benchmark of personalized glucose predictive models in type 1 diabetes
- Author
-
Mounim A. El Yacoubi, Mehdi Ammi, and Maxime De Bois
- Subjects
Blood Glucose ,Source code ,Computer science ,media_common.quotation_subject ,Biomedical Engineering ,Machine learning ,computer.software_genre ,Field (computer science) ,Humans ,Time series ,media_common ,Artificial neural network ,business.industry ,Blood Glucose Self-Monitoring ,Reproducibility of Results ,Usability ,Benchmarking ,Computer Science Applications ,Data flow diagram ,Diabetes Mellitus, Type 1 ,Glucose ,Benchmark (computing) ,Artificial intelligence ,business ,computer - Abstract
Due to the sensitive nature of diabetes-related data, preventing them from being easily shared between studies, and the wide discrepancies in their data processing pipeline, progress in the field of glucose prediction is hard to assess. To address this issue, we introduce GLYFE (GLYcemia Forecasting Evaluation), a benchmark of machine learning-based glucose predictive models. We present the accuracy and clinical acceptability of nine different models coming from the literature, from standard autoregressive to more complex neural network-based models. These results are obtained on two different datasets, namely UVA/Padova Type 1 Diabetes Metabolic Simulator (T1DMS) and Ohio Type-1 Diabetes Mellitus (OhioT1DM), featuring artificial and real type 1 diabetic patients respectively. By providing extensive details about the data flow as well as by providing the whole source code of the benchmarking process, we ensure the reproducibility of the results and the usability of the benchmark by the community. Those results serve as a basis of comparison for future studies. In a field where data are hard to obtain, and where the comparison of results from different studies is often irrelevant, GLYFE gives the opportunity of gathering researchers around a standardized common environment.
- Published
- 2021
- Full Text
- View/download PDF
7. Graph Convolutional Networks-based Label Distribution Learning for Image Classification
- Author
-
Changqing Gong, Shanshan Wang, Yiquan Wu, Chongwen Liu, Mounim A. El-Yacoubi, and Huafeng Qin
- Published
- 2022
- Full Text
- View/download PDF
8. Multi-Scale and Multi-Direction GAN for CNN-Based Single Palm-Vein Identification
- Author
-
Chongwen Liu, Mounim A. El-Yacoubi, Huafeng Qin, and Yantao Li
- Subjects
021110 strategic, defence & security studies ,Computer Networks and Communications ,Computer science ,business.industry ,0211 other engineering and technologies ,Stability (learning theory) ,Sample (statistics) ,Pattern recognition ,02 engineering and technology ,Facial recognition system ,Convolutional neural network ,Image (mathematics) ,Set (abstract data type) ,Identification (information) ,Discriminative model ,Artificial intelligence ,Safety, Risk, Reliability and Quality ,business - Abstract
Despite recent advances of deep neural networks in hand vein identification, the existing solutions assume the availability of a large and rich set of training image samples. These solutions, therefore, still lack the capability to extract robust and discriminative hand-vein features from a single training image sample. To overcome this problem, we propose a single-sample-per-person (SSPP) palm-vein identification approach, where only a single sample per class is enrolled in the gallery set for training. Our approach, named MSMDGAN + CNN, consists of a multi-scale and multi-direction generative adversarial network (MSMDGAN) for data augmentation and a convolutional neural network (CNN) for palm-vein identification. First, a novel data augmentation approach, MSMDGAN, is developed to learn the internal distribution of patches in a single image. The proposed MSMDGAN consists of multiple fully convolutional GANs, each of which is responsible for learning the patch distribution within an image at a different scale and at a different direction. Second, given the resulting augmented data by MSMDGAN, we design a CNN for single sample palm-vein recognition. The experimental results on two public hand-vein databases demonstrate that MSMDGAN is able to generate realistic and diverse samples, which, in turn, improves the stability of the CNN. In terms of accuracy, MSMDGAN + CNN outperforms other representative approaches and achieves state-of-the-art recognition results.
- Published
- 2021
- Full Text
- View/download PDF
9. Pattern Recognition and Artificial Intelligence
- Author
-
Mounim A. El Yacoubi
- Published
- 2022
- Full Text
- View/download PDF
10. Optoelectronic Reservoir Computer for Early Stage Alzheimer’s Disease detection
- Author
-
Nickson Mwamsojo, Kamel Merghem, Mounim A. El–Yacoubi, Yann Frignac, Badr-Eddine Benkelfat, Anne-Sophie Rigaud, and Frederic Lehmann
- Abstract
An optoelectronic Reservoir Computer is proposed and implemented numerically and on physical hardware for early-stage Alzheimer’s disease detection for the first time. The approach yields classification accuracy of 85% surpassing state-of-the-art performances.
- Published
- 2022
- Full Text
- View/download PDF
11. Type 2 diabetes detection with Light CNN from single raw PPG wave
- Author
-
Serena Zanelli, Mounim A. El Yacoubi, Magid Hallab, and Mehdi Ammi
- Subjects
History ,Polymers and Plastics ,General Computer Science ,General Engineering ,General Materials Science ,Business and International Management ,Electrical and Electronic Engineering ,Industrial and Manufacturing Engineering - Published
- 2023
- Full Text
- View/download PDF
12. Cross-Modality Domain Adaptation for hand-vein recognition
- Author
-
Shuqiang Yang, Huafeng Qin, Mounim A. El-Yacoubi, and Chongwen Liu
- Published
- 2021
- Full Text
- View/download PDF
13. End-to-End Generative Adversarial Network for Hand-Vein Recognition
- Author
-
Huafeng Qins and Mounim A. El-Yacoubi
- Published
- 2021
- Full Text
- View/download PDF
14. Transfer learning of CNN-based signal quality assessment from clinical to non-clinical PPG signals
- Author
-
Serena, Zanelli, Mounim A, El Yacoubi, Magid, Hallab, and Mehdi, Ammi
- Subjects
Machine Learning ,Heart Rate ,Reproducibility of Results ,Neural Networks, Computer ,Photoplethysmography - Abstract
Photoplethysmography (PPG) is a non-invasive and cost-efficient optical technique used to assess blood volume variation inside the micro-circulation. PPG technology is widely used in a variety of clinical and non-clinical devices in order to investigate the cardiovascular system. One example of clinical PPG device is the pulse oxymeter, while non-clinical PPG devices include smartphones and smartwatches. Such a wide diffusion of PPG devices generates plenty of different PPG signals that differ from each other. In fact, intrinsic device characteristics strongly influence PPG waveform. In this paper we investigate transfer learning approaches on a Covolutional Neural Network based quality assessment method in order to generalize our model across different PPG devices. Our results show that our model is able to classify accurately signal quality over different PPG datasets while requiring a small amount of data for fine-tuning.Clinical relevance- A precise detection and extraction of high quality PPG segments could enhance significantly the reliability of the medical analysis based on the signal.
- Published
- 2021
- Full Text
- View/download PDF
15. Adaptive Retraining of Visual Recognition-Model in Human Activity Recognition by Collaborative Humanoid Robots
- Author
-
Vineet Nagrath, Mounim A. El Yacoubi, and Mossaab Hariz
- Subjects
0209 industrial biotechnology ,Computer science ,Retraining ,Probabilistic logic ,02 engineering and technology ,Activity recognition ,Visual recognition ,020901 industrial engineering & automation ,Human–computer interaction ,0202 electrical engineering, electronic engineering, information engineering ,Recognition system ,Robot ,020201 artificial intelligence & image processing ,Cloud server ,Humanoid robot - Abstract
We present a vision-based activity recognition system for centrally connected humanoid robots. The robots interact with several human participants who have varying behavioral styles and inter-activity-variability. A cloud server provides and updates the recognition model in all robots. The server continuously fetches the new activity videos recorded by the robots. It also fetches corresponding results and ground-truths provided by the human interacting with the robot. A decision on when to retrain the recognition model is made by an evolving performance-based logic. In the current article, we present the aforementioned adaptive recognition system with special emphasis on the partitioning logic employed for the division of new videos in training, cross-validation, and test groups of the next retraining instance. The distinct operating logic is based on class-wise recognition inaccuracies of the existing model. We compare this approach to a probabilistic partitioning approach in which the videos are partitioned with no performance considerations.
- Published
- 2020
- Full Text
- View/download PDF
16. Enhancing the Interpretability of Deep Models in Heathcare Through Attention: Application to Glucose Forecasting for Diabetic People
- Author
-
Mehdi Ammi, Maxime De Bois, and Mounim A. El Yacoubi
- Subjects
Black box (phreaking) ,FOS: Computer and information sciences ,Computer Science - Machine Learning ,Computer Science - Artificial Intelligence ,business.industry ,Computer science ,Deep learning ,Machine Learning (stat.ML) ,Machine learning ,computer.software_genre ,Task (project management) ,Machine Learning (cs.LG) ,Recurrent neural network ,Artificial Intelligence (cs.AI) ,Statistics - Machine Learning ,Artificial Intelligence ,Health care ,Computer Vision and Pattern Recognition ,Artificial intelligence ,Architecture ,business ,computer ,Software ,Interpretability - Abstract
The adoption of deep learning in healthcare is hindered by their “black box” nature. In this paper, we explore the RETAIN architecture for the task of glucose forecasting for diabetic people. By using a two-level attention mechanism, the recurrent-neural-network-based RETAIN model is interpretable. We evaluate the RETAIN model on the type-2 IDIAB and the type-1 OhioT1DM datasets by comparing its statistical and clinical performances against two deep models and three models based on decision trees. We show that the RETAIN model offers a very good compromise between accuracy and interpretability, being almost as accurate as the LSTM and FCN models while remaining interpretable. We show the usefulness of its interpretable nature by analyzing the contribution of each variable to the final prediction. It revealed that signal values older than 1[Formula: see text]h are not used by the RETAIN model for 30[Formula: see text]min ahead of time prediction of glucose. Also, we show how the RETAIN model changes its behavior upon the arrival of an event such as carbohydrate intakes or insulin infusions. In particular, it showed that the patient’s state before the event is particularly important for the prediction. Overall the RETAIN model, thanks to its interpretability, seems to be a very promising model for regression or classification tasks in healthcare.
- Published
- 2020
- Full Text
- View/download PDF
17. End-to-End Generative Adversarial Network for Palm-Vein Recognition
- Author
-
Huafeng Qin and Mounim A. El Yacoubi
- Subjects
Pixel ,Matching (graph theory) ,ComputingMethodologies_SIMULATIONANDMODELING ,Computer science ,business.industry ,Binary image ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Pattern recognition ,Convolutional neural network ,Thresholding ,Reduction (complexity) ,Robustness (computer science) ,Segmentation ,Artificial intelligence ,business - Abstract
Palm-vein recognition has received increasing researchers’ attention in recent years. However, palm-vein recognition faces various challenges in practical applications, one of which is the lack of robustness against image quality degradation, resulting in reduction of the verification accuracy. To address this problem, this paper proposes an end-to-end convolutional neural network to automatically extract vein network features, thus without resorting to any hand-crafted features. Firstly, we label the palm-vein pixels based on several handcraft-based segmentation methods and reconstruct a training set accordingly. Secondly, an end-to-end vein segmentation model is proposed based on a generative adversarial network. After training, this model outputs a map where each value is the probability that the corresponding pixel belongs to a vein pattern. The resulting map is then subject to binarization by thresholding and stored in a binary image, used subsequently for verification matching. The experimental results on the public CASIA palm-vein dataset demonstrate the effectiveness of our proposed method.
- Published
- 2020
- Full Text
- View/download PDF
18. Integration of Clinical Criteria into the Training of Deep Models: Application to Glucose Prediction for Diabetic People
- Author
-
Maxime De Bois, Mounim A. El-Yacoubi, and Mehdi Ammi
- Subjects
FOS: Computer and information sciences ,Computer Science - Machine Learning ,020205 medical informatics ,Computer science ,media_common.quotation_subject ,Medicine (miscellaneous) ,Health Informatics ,02 engineering and technology ,Machine learning ,computer.software_genre ,Quantitative Biology - Quantitative Methods ,01 natural sciences ,Machine Learning (cs.LG) ,Health Information Management ,Health care ,0202 electrical engineering, electronic engineering, information engineering ,Set (psychology) ,Function (engineering) ,Quantitative Methods (q-bio.QM) ,media_common ,business.industry ,010401 analytical chemistry ,0104 chemical sciences ,Computer Science Applications ,FOS: Biological sciences ,Artificial intelligence ,business ,computer ,Information Systems - Abstract
Standard objective functions used during the training of neural-network-based predictive models do not consider clinical criteria, leading to models that are not necessarily clinically acceptable. In this study, we look at this problem from the perspective of the forecasting of future glucose values for diabetic people. In this study, we propose the coherent mean squared glycemic error (gcMSE) loss function. It penalizes the model during its training not only of the prediction errors, but also on the predicted variation errors which is important in glucose prediction. Moreover, it makes possible to adjust the weighting of the different areas in the error space to better focus on dangerous regions. In order to use the loss function in practice, we propose an algorithm that progressively improves the clinical acceptability of the model, so that we can achieve the best tradeoff possible between accuracy and given clinical criteria. We evaluate the approaches using two diabetes datasets, one having type-1 patients and the other type-2 patients. The results show that using the gcMSE loss function, instead of a standard MSE loss function, improves the clinical acceptability of the models. In particular, the improvements are significant in the hypoglycemia region. We also show that this increased clinical acceptability comes at the cost of a decrease in the average accuracy of the model. Finally, we show that this tradeoff between accuracy and clinical acceptability can be successfully addressed with the proposed algorithm. For given clinical criteria, the algorithm can find the optimal solution that maximizes the accuracy while at the same meeting the criteria.
- Published
- 2020
- Full Text
- View/download PDF
19. Interpreting Deep Glucose Predictive Models for Diabetic People Using RETAIN
- Author
-
Maxime De Bois, Mounim A. El-Yacoubi, and Mehdi Ammi
- Subjects
Artificial neural network ,Computer science ,Mechanism (biology) ,business.industry ,Deep learning ,030209 endocrinology & metabolism ,02 engineering and technology ,Field (computer science) ,03 medical and health sciences ,0302 clinical medicine ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,Interpretability - Abstract
Progress in the biomedical field through the use of deep learning is hindered by the lack of interpretability of the models. In this paper, we study the RETAIN architecture for the forecasting of future glucose values for diabetic people. Thanks to its two-level attention mechanism, the RETAIN model is interpretable while remaining as efficient as standard neural networks.
- Published
- 2020
- Full Text
- View/download PDF
20. Local Attention Transformer-based Full-view Finger-Vein Identification
- Author
-
Huafeng Qin, Rongshan Hu, Mounim A. El-Yacoubi, Yantao Li, and Xinbo Gao
- Subjects
Media Technology ,Electrical and Electronic Engineering - Published
- 2022
- Full Text
- View/download PDF
21. Siamese Network Based Feature Learning for Improved Intrusion Detection
- Author
-
Houda Jmila, Gregory Blanc, Mohamed Ibn Khedher, Mounim A. El Yacoubi, Département Réseaux et Services de Télécommunications (RST), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Institut Polytechnique de Paris (IP Paris), Réseaux, Systèmes, Services, Sécurité (R3S-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS), IRT SystemX (IRT SystemX), Département Electronique et Physique (EPH), and ARMEDIA (ARMEDIA-SAMOVAR)
- Subjects
Siamese ,Computer science ,Feature extraction ,Anomaly detection ,02 engineering and technology ,Intrusion detection system ,IDS ,Machine learning ,computer.software_genre ,Representation learning ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,[INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] ,Discriminative model ,0202 electrical engineering, electronic engineering, information engineering ,Representation (mathematics) ,UNSW15 data-set ,business.industry ,05 social sciences ,050301 education ,Feature (computer vision) ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,0503 education ,Feature learning ,computer ,Curse of dimensionality - Abstract
International audience; Intrusion detection is a critical Cyber Security subject. Different Machine Learning (ML) approaches have been proposed for Intrusion Detection Systems (IDS). However, their application to real-life scenarios remains challenging due to high data dimensionality. Representation learning (RL) allows discriminative feature representation in a low dimensionality space. The application of this technique in IDS requires more investigation. This paper examines and discusses the contribution of Siamese network based representation learning in improving the IDS performance. Extensive experimental results under different evaluation scenarios show different improvement rates depending on the scenario.
- Published
- 2019
- Full Text
- View/download PDF
22. Word spotting in handwritten Arabic documents using bag-of-descriptors
- Author
-
Mostafa Mrabti, Ghizlane Khaissidi, Mounim A. El Yacoubi, Youssef Elfakir, and Driss Chenouni
- Subjects
Fluid Flow and Transfer Processes ,Computer Networks and Communications ,business.industry ,Arabic ,Computer science ,Health, Toxicology and Mutagenesis ,General Engineering ,02 engineering and technology ,Spotting ,computer.software_genre ,01 natural sciences ,language.human_language ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,language ,020201 artificial intelligence & image processing ,General Materials Science ,Artificial intelligence ,010306 general physics ,business ,computer ,Social Sciences (miscellaneous) ,Word (computer architecture) ,Natural language processing - Published
- 2016
- Full Text
- View/download PDF
23. Automatic processing of Historical Arabic Documents: A comprehensive Survey
- Author
-
Houda Jmila, Mounim A. El-Yacoubi, Mohamed Ibn Khedher, IRT SystemX (IRT SystemX), Département Réseaux et Services de Télécommunications (RST), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Institut Polytechnique de Paris (IP Paris), Réseaux, Systèmes, Services, Sécurité (R3S-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Electronique et Physique (EPH), and ARMEDIA (ARMEDIA-SAMOVAR)
- Subjects
Survey on Historical Arabic Documents ,Computer science ,Arabic ,Process (engineering) ,02 engineering and technology ,computer.software_genre ,01 natural sciences ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Task (project management) ,Data retrieval ,Artificial Intelligence ,0103 physical sciences ,0202 electrical engineering, electronic engineering, information engineering ,Historical Arabic Documents ,010306 general physics ,Arabic script ,Text recognition ,Writer identification ,Focus (computing) ,Information retrieval ,Subject (documents) ,Text analysis ,language.human_language ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Scripting language ,Signal Processing ,ComputingMethodologies_DOCUMENTANDTEXTPROCESSING ,language ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,computer ,Software - Abstract
International audience; Nowadays, there is a huge amount of Historical Arabic Documents (HAD) in the national libraries and archives around the world. Analyzing this type of data manually is a difficult and costly task. Thus, an automatic process is required to exploit these documents more rapidly. Processing historical documents is a recent research subject that has seen a remarkable growth in the last years. Processing Historical Arabic Documents is a particularly challenging problem. First, due to complicated nature of Arabic script compared to other scripts and second because the documents are ancient. This paper focuses on this difficult problem and provides a comprehensive survey of existing research work. First, we describe in detail the challenges making the automatic processing of Historical Arabic Documents a difficult task. Second, we classify this task into four applications of automatic processing of HAD: i) Analyze the document to extract the main text ii) Identify the writer of the document iii) Recognize some words or parts of the document in a reference dataset andiv) Retrieve and extract specific data from the document. For each application, existing approaches are surveyed and qualitatively described. Finally, we focus on available datasets and describe how they can be used in each application.
- Published
- 2020
- Full Text
- View/download PDF
24. Estimation of Static and Dynamic Urban Populations with Mobile Network Metadata
- Author
-
Vincent Gauthier, Ghazaleh Khodabandelou, Marco Fiore, Mounim A. El-Yacoubi, Réseaux, Systèmes, Services, Sécurité (R3S-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Réseaux et Services de Télécommunications (RST), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS), Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), ARMEDIA (ARMEDIA-SAMOVAR), and Département Electronique et Physique (EPH)
- Subjects
FOS: Computer and information sciences ,Computer Networks and Communications ,Computer science ,Mobile computing ,02 engineering and technology ,Urban area ,computer.software_genre ,Mobile network metadata ,[INFO.INFO-SI]Computer Science [cs]/Social and Information Networks [cs.SI] ,Computer Science - Networking and Internet Architecture ,Computer Science - Computers and Society ,[INFO.INFO-MC]Computer Science [cs]/Mobile Computing ,11. Sustainability ,Computers and Society (cs.CY) ,0202 electrical engineering, electronic engineering, information engineering ,Static population density ,Electrical and Electronic Engineering ,Estimation ,Networking and Internet Architecture (cs.NI) ,Social and Information Networks (cs.SI) ,geography ,Dynamic population density ,geography.geographical_feature_category ,Database ,Computer Science - Social and Information Networks ,020206 networking & telecommunications ,Population estimation ,Metropolitan area ,Conurbation ,Metadata ,Cellular network ,computer ,Software - Abstract
International audience; Communication-enabled devices routinely carried by individuals have become pervasive, opening unprecedented opportunities for collecting digital metadata about the mobility of large populations. In this paper, we propose a novel methodology for the estimation of people density at metropolitan scales, using subscriber presence metadata collected by a mobile operator. Our approach suits the estimation of static population densities, i.e., of the distribution of dwelling units per urban area contained in traditional censuses. More importantly, it enables the estimation of dynamic population densities, i.e., the time-varying distributions of people in a conurbation. By leveraging substantial real-world mobile network metadata and ground-truth information, we demonstrate that the accuracy of our solution is superior to that granted by state-of-the-art methods in practical heterogeneous urban scenarios.
- Published
- 2018
- Full Text
- View/download PDF
25. Naive Bayesian Fusion for Action Recognition from Kinect
- Author
-
Amel Ben Mahjoub, Mohamed Atri, Mohamed Ibn Khedher, Mounim A. El Yacoubi, ARMEDIA (ARMEDIA-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS), Faculté des Sciences de Monastir (FSM), Université de Monastir - University of Monastir (UM), Altran Research, and ALTRAN (FRANCE)-ALTRAN (FRANCE)
- Subjects
Fusion ,Computer science ,Speech recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Depth motion maps ,Naive Bayesian fusion ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,RGB-D ,02 engineering and technology ,Action recognition ,Features fusion ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,Naive Bayes classifier ,0302 clinical medicine ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing - Abstract
International audience; The recognition of human actions based on three-dimensional depth data has become a very active research field in computer vision. In this paper, we study the fusion at the feature and decision levels for depth data captured by a Kinect camera to improve action recognition. More precisely, from each depth video sequence, we compute Depth Motion Maps (DMM) from three projection views: front, side and top. Then shape and texture features are extracted from the obtained DMMs. These features are based essentially on Histogram of Oriented Gradients (HOG) and Local Binary Patterns (LBP) descriptors. We propose to use two fusion levels. The first is a feature fusion level and is based on the concatenation of HOG and LBP descriptors. The second, a score fusion level, based on the naive-Bayes combination approach, aggregates the scores of three classifiers: a collaborative representation classifier, a sparse representation classifier and a kernel based extreme learning machine classifier. The experimental results conducted on two public datasets, Kinect v2 and UTD-MHAD, show that our approach achieves a high recognition accuracy and outperforms several existing methods.
- Published
- 2017
- Full Text
- View/download PDF
26. Methods of pathology detection by speech analysis: Survey
- Author
-
Mustafa Berkay Yilmaz, Mounim A. El Yacoubi, ARMEDIA (ARMEDIA-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Department of Computer Engineering (Akdeniz University), Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
medicine.medical_specialty ,Pathology ,business.industry ,Hearing loss ,Acoustics ,Disease ,Alzheimer's disease ,Audiology ,medicine.disease ,Speech processing ,Pathology detection ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,otorhinolaryngologic diseases ,Feature extraction ,Medicine ,Classification methods ,Speech analysis ,Parkinson ,medicine.symptom ,business ,Literature survey ,Cognitive impairment ,Stroke - Abstract
International audience; Speech analysis can be used for healthcare tasks such as pathology detection. Conventionally, a speech-language pathologist is specialized to detect anomalies from speech. Speech disorders result from a variety of causes such as brain injury, stroke, hearing loss, developmental delay or emotion alteration. Content of the speech is often not of interest for pathology detection, but characteristics are. In the literature of automatic pathology detection by speech analysis, physiological pathologies such as nodule and cancer are taken into account along with neurodegenerative brain disorders such as Parkinson's disease, Alzheimer's disease and mild cognitive impairment. As the problem of pathology detection from speech has become a vast research area, comprehensive reviews are needed by researchers to contribute novel approaches. In this study, a literature survey on pathology detection is provided including data types, features, classification methods and accuracy rates
- Published
- 2017
- Full Text
- View/download PDF
27. Analyse automatique de l’écriture manuscrite en ligne pour la détection précoce des pathologies neurodégénératives
- Author
-
Khaissidi Ghizlane, Belahsen Faouzi, Aboulem Ghita, Ammour Alae, Sonia Garcia-Salicetti, Aouraghe Ibtissame, Mrabti Mostafa, and Mounim A. El-Yacoubi
- Abstract
L'objectif de cet article est d'analyser l'ecriture manuscrite en ligne, caracterisee par une intervention primordiale des muscles et du cerveau, afin de detecter des pathologies neurologiques comme l'Alzheimer et le Parkinson, qui sont liees a l'organisation de l'ensemble des facultes mentales. Dans ce cadre, une acquisition de donnees est realisee au sein du service neurologie au CHU Hassan II de Fes. Elle est faite sur une tablette graphique WACOM permettant de recuperer les donnees spatiotemporelles de l'ecriture manuscrite. La problematique de la detection de pathologies necessite prealablement l'etude des parametres descriptifs de l'ecriture manuscrite permettant la caracterisation des sujets controles et des personnes atteintes. Cet article decrit principalement la phase d'acquisition de donnees en cours au CHU de Fes, ainsi que l'analyse preliminaire de parametres spatiotemporels de l'ecriture realisee sur ces donnees.
- Published
- 2017
- Full Text
- View/download PDF
28. Refining Visual Activity Recognition with Semantic Reasoning
- Author
-
Vincent Vassout, Nathan Ramoly, Mounim A. El Yacoubi, Mossaab Hariz, Amel Bouzeghoub, Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Informatique (INF), Centre National de la Recherche Scientifique (CNRS), Algorithmes, Composants, Modèles Et Services pour l'informatique répartie (ACMES-SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), ARMEDIA (ARMEDIA-SAMOVAR), and Département Electronique et Physique (EPH)
- Subjects
0209 industrial biotechnology ,Activities of daily living ,Ubiquitous computing ,Vision ,Robot ,Process (engineering) ,Computer science ,Elderly care ,Context (language use) ,02 engineering and technology ,Ontology (information science) ,Activity recognition ,020901 industrial engineering & automation ,Smart home ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,Human–computer interaction ,Home automation ,0202 electrical engineering, electronic engineering, information engineering ,[INFO.INFO-RB]Computer Science [cs]/Robotics [cs.RO] ,Relevance (information retrieval) ,[INFO.INFO-HC]Computer Science [cs]/Human-Computer Interaction [cs.HC] ,Ontology ,business.industry ,Pervasive environment ,020201 artificial intelligence & image processing ,Artificial intelligence ,business - Abstract
International audience; As elderly care is getting more and more important, monitoring of activity of daily living (ADL) has become an active research topic. Both robotic and pervasive computing domains, through smart homes, are creating opportunities to move forward in ADL field. Multiple techniques were proposed to identify activities, each with their features, advantages and limits. However, it is a very challenging issue and none of the existing methods provides robust results, in particular in real daily living scenarios. This is particularly true for vision-based approaches used by robots. In this paper, we propose to refine a robot's visual activity recognition process by relying on smart home sensors. We assert that the consideration of further sensors and the knowledge about the target user together with the semantic by means of an ontology and a reasoning layer in the recognition process, has improved the existing works results. We experimented through multiple activity recognition scenarios with and without refinement to assess the relevance of such a combination. Although our tests reveal positive results, they also point out limits and challenges that we discuss in this paper
- Published
- 2017
- Full Text
- View/download PDF
29. Neural Information Processing
- Author
-
Mounim A. El Yacoubi
- Published
- 2017
- Full Text
- View/download PDF
30. Comparing Hybrid NN-HMM and RNN for Temporal Modeling in Gesture Recognition
- Author
-
Nicolas Granger and Mounim A. El Yacoubi
- Subjects
Context model ,Computer science ,business.industry ,Speech recognition ,02 engineering and technology ,010501 environmental sciences ,Machine learning ,computer.software_genre ,Markov model ,01 natural sciences ,Convolution ,Recurrent neural network ,Gesture recognition ,Metric (mathematics) ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,Hidden Markov model ,computer ,Feature learning ,0105 earth and related environmental sciences - Abstract
This paper provides an extended comparison of two temporal models for gesture recognition, namely Hybrid Neural Network-Hidden Markov Models (NN-HMM) and Recurrent Neural Networks (RNN) which have lately claimed the state-the-art performances. Experiments were conducted on both models in the same body of work, with similar representation learning capacity and comparable computational costs. For both solutions, we have integrated recent contributions to the model architectures and training techniques. We show that, for this task, Hybrid NN-HMM models remain competitive with Recurrent Neural Networks in a standard setting. For both models, we analyze the influence of the training objective function on the final evaluation metric. We further tested the influence of temporal convolution to improve context modeling, a technique which was recently reported to improve the accuracy of gesture recognition.
- Published
- 2017
- Full Text
- View/download PDF
31. Finger-Vein Quality Assessment Based on Deep Features From Grayscale and Binary Images
- Author
-
Huafeng Qin, Mounim A. El-Yacoubi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), ARMEDIA (ARMEDIA-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Institut Polytechnique de Paris (IP Paris), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Biometrics ,Computer science ,Image quality ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,0211 other engineering and technologies ,Word error rate ,02 engineering and technology ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,Grayscale ,Artificial Intelligence ,0202 electrical engineering, electronic engineering, information engineering ,Finger-vein verification ,021110 strategic, defence & security studies ,Artificial neural network ,business.industry ,Deep learning ,Binary image ,Pattern recognition ,020201 artificial intelligence & image processing ,Computer Vision and Pattern Recognition ,Artificial intelligence ,business ,Feature learning ,Software ,Quality assessment - Abstract
International audience; Finger-vein verification is a highly secure biometric authentication that has been widely investigated over the last years. One of its challenges, however, is the possible degradation of image quality, that results in spurious and missing vein patterns, which increases the verification error. Despite recent advances in finger-vein quality assessment, the proposed solutions are limited as they depend on human expertise and domain knowledge to extract handcrafted features for assessing quality. We have proposed, recently, the first Deep Neural Network (DNN) framework for assessing finger-vein quality, that does not require manual labeling of high and low quality images, as is the case for state of the art methods, but infers such annotations automatically based on an objective indicator, the biometric verification decision. This framework has significantly outperformed the existing methods, whether the input image is in grayscale or is binary. Motivated by these performances, we propose, in this work, a representation learning of finger vein image quality, where a DNN takes as input conjointly the grayscale and binary versions of the input image to predict vein quality. Our model allows to learn the joint representation from grayscale and binary images, for quality assessment. The experimental results, obtained on a large public dataset, demonstrates that our proposed method accurately identifies high and low quality images, and outperforms other techniques in terms of equal error rate (EER) minimization, including our previous DNN models, based either on grayscale or binary input.
- Published
- 2019
- Full Text
- View/download PDF
32. Multimodal Sequential Modeling and Recognition of Human Activities
- Author
-
Mounim A. El-Yacoubi, Mouna Selmi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Centre National de la Recherche Scientifique (CNRS), ARMEDIA (ARMEDIA-SAMOVAR), and Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
- Subjects
Conditional random field ,020205 medical informatics ,Computer science ,business.industry ,Activities of daily living ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Pattern recognition ,Multimodal representation ,02 engineering and technology ,Object (computer science) ,ENCODE ,Motion (physics) ,Hierarchical classifier ,Ambient assisted living system ,SVM-HCRF ,Support vector machine ,ComputingMethodologies_PATTERNRECOGNITION ,Discriminative model ,0202 electrical engineering, electronic engineering, information engineering ,Feature (machine learning) ,020201 artificial intelligence & image processing ,Artificial intelligence ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Interest points - Abstract
International audience; Video-based recognition of activities of daily living (ADLs) is being used in ambient assisted living systems in order to support independent living of old people. In this work, we propose a new multimodal ADL recognition method by modeling the correlation between motion and object information. We encode motion using dense interest point trajectories which are robust to occlusion and speed variability. We formulate the learning problem using a two-layer SVM hidden conditional random field (HCRF) recognition model that is particularly relevant for multimodal sequence recognition. This hierarchical classifier opti-mally combines the discriminative power of SVM and the long-range feature dependencies modeling by the HCRF
- Published
- 2016
- Full Text
- View/download PDF
33. SeqTools: A python package for easy transformation, combination and evaluation of large datasets
- Author
-
Mounim A. El Yacoubi and Nicolas Granger
- Subjects
Programming language ,Computer science ,Python (programming language) ,computer.software_genre ,computer ,computer.programming_language - Published
- 2018
- Full Text
- View/download PDF
34. Étude de l’écriture manuscrite sur tablette graphique pour l’aide au diagnostic précoce des maladies neurodégénératives. Premiers résultats chez des patients parkinsoniens
- Author
-
Ghita Aboulem, Khaissidi Ghizlane, Ammour Alae, Mounim A. El-Yacoubi, Aboulem Ghita, Belahsen Mohamed Faouzi, Sonia Garcia-Salicetti, Aouraghe Ibtissame, Mrabti Mostafa, Laboratoire d’Épidemiologie, Recherche Clinique et Santé Communautaire (Faculté de Médecine et de Pharmacie de Fès (FMPF), Centre Hospitalier Universitaire Hassan II) (ERCSC), Laboratoire d'informatique et de physique interdisciplinaire [Fes] (Ecole Normale Supérieure de Fes) (LIPI), École normale supérieure - Fès (ENS Fès), ARMEDIA (ARMEDIA-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Neurology ,[SCCO.NEUR]Cognitive science/Neuroscience ,[SDV.MHEP.GEG]Life Sciences [q-bio]/Human health and pathology/Geriatry and gerontology ,Maladies neurodégénératives ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Écriture manuscrite ,Neurology (clinical) ,Tablette graphique - Abstract
Introduction L’ecriture est un processus cognitif qui resulte de l’interaction entre plusieurs facteurs du developpement cognitifs, linguistiques, et psychomoteurs. De ce fait, la deterioration de celle-ci est un signe de dysfonctionnement dans l’une des spheres cognitives. Objectifs Notre objectif est de developper une technique innovante, permettant d’aider les professionnels de sante a depister une deterioration cognitive a un stade precoce lors des maladies neurodegeneratives a l’aide de l’analyse de l’ecriture manuscrite. Methodes L’ecriture manuscrite est capturee sur tablette graphique (WACOM) et est analysee « en ligne » comme une sequence de signaux acquis (position, pression, vitesse et inclinaison du stylo) chez des patients marocains atteints de maladie de Parkinson, maladie d’Alzheimer et MCI ; et sera comparer a des volontaires normaux. Resultats Nous avons effectue une premiere analyse des resultats de 34 parkinsoniens compares a 34 controles apparies selon l’âge et le niveau d’etudes. Les resultats revelent des differences significatives entre le groupe temoin et le groupe Parkinson, mais aussi dans le groupe Parkinson entre des patients de bas niveau et haut niveau socioculturel. Les parkinsoniens ont une vitesse et une acceleration plus faible, avec des hesitations plus elevees que les SC. Discussion Nous retrouvons des parametres discriminants de l’ecriture manuscrite permettant d’identifier des clusters de personnes ayant un vieillissement normal et d’autres souffrants de pathologies neurodegeneratives en fonction de leurs niveau socioculturel. Conclusion L’etude a permis dans un premier temps de determiner un ensemble caracterisant les malades de Parkinson a un stade precoce par rapport aux sujets sains.
- Published
- 2018
- Full Text
- View/download PDF
35. Local Sparse Representation Based Interest Point Matching for Person Re-identification
- Author
-
Mounim A. El Yacoubi, Mohamed Ibn Khedher, Département Electronique et Physique (EPH), and Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
- Subjects
Matching (statistics) ,Current (mathematics) ,Interest Points ,Sparse Representation ,business.industry ,Computer science ,Binary classifier ,Pattern recognition ,Point set registration ,Sparse approximation ,Re identification ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Binary classification ,Artificial intelligence ,State (computer science) ,Filtering ,business ,Person Re-identification - Abstract
International audience; This paper presents a multi-shot person re-identification system from video sequences based on Interest Points (SURFs) matching. Our objective is to improve the Interest Points (IPs) matching using low resolution images in terms of re-identification accuracy and running time. First, we propose a new method of SURF matching via Local Sparse Representation (LSR). Each SURF in the test video sequence is expressed as a sparse representation of a subset of SURFs in the reference dataset. Our approach consists of searching the latter subset from the reference IPs that are located on a similar spatial neighborhood to the query IP. Second, it investigates whether IPs filtering can decrease the re-identification running time. An ensemble of binary classifiers are evaluated. Our approach is assessed on the large dataset PRID-2011 and shown to outperform favorably with current state of the art
- Published
- 2015
- Full Text
- View/download PDF
36. Age and Gender Characterization Through a Two Layer Clustering of Online Handwriting
- Author
-
Gabriel Marzinotto, Sonia Garcia-Salicetti, Mounim A. El-Yacoubi, José C. Rosales, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Département Informatique (INF), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Two Layer Clustering ,Scheme (programming language) ,business.industry ,Computer science ,Speech recognition ,Stability (learning theory) ,Handwriting Styles ,Gender ,[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] ,Variation (game tree) ,computer.software_genre ,Field (computer science) ,Style (sociolinguistics) ,[INFO.INFO-TT]Computer Science [cs]/Document and Text Processing ,Age ,[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Handwriting ,Artificial intelligence ,Layer (object-oriented design) ,Cluster analysis ,business ,computer ,Natural language processing ,computer.programming_language - Abstract
International audience; Age characterization through handwriting is an important research field with several potential applications. It can, for instance, characterize normal aging process on one hand and detect significant handwriting degradation possibly related to early pathological states. In this work, we propose a novel approach to characterize age and gender from online handwriting styles. Contrary to previous works on handwriting style characterization, our contribution consists of a two-layer clustering scheme. At the first layer, we perform a writerindependent clustering on handwritten words, described by global features. At the second layer, we perform a clustering that considers style variation at the previous level for each writer, to provide a measure of his/her handwriting stability across words. We investigated different clustering algorithms and their effectiveness for each layer. The handwriting style patterns inferred by our novel technique show interesting correlations between handwriting, age and gender.
- Published
- 2015
- Full Text
- View/download PDF
37. A statistical approach for phrase location and recognition within a text line: an application to street name recognition
- Author
-
M. Gilloux, J.-M. Bertille, and Mounim A. El-Yacoubi
- Subjects
Matching (statistics) ,Phrase ,Computer science ,business.industry ,Applied Mathematics ,Feature extraction ,Statistical model ,Pattern recognition ,Image segmentation ,computer.software_genre ,Computational Theory and Mathematics ,Artificial Intelligence ,Handwriting ,Handwriting recognition ,Computer Vision and Pattern Recognition ,Artificial intelligence ,Line (text file) ,Hidden Markov model ,business ,computer ,Software ,Natural language processing - Abstract
We describe an approach to conjointly locate and recognize a street name within a street line. The system developed is based on a probabilistic framework that naturally integrates various knowledge sources to emit a final decision. At the handwriting signal level, hidden Markov models are extensively used to provide the needed matching scores. Several optimization techniques are employed to speed up the processing time. Experiments carried out on large data sets of street line images, automatically extracted from real French mail envelope images, show very promising results.
- Published
- 2002
- Full Text
- View/download PDF
38. Locality sensitive hashing for content based image retrieval: A comparative experimental study
- Author
-
Sanaa Chafik, Mounim A. El Yacoubi, Hamid El Ouardi, Imane Daoudi, Bernadette Dorizzi, Faculté des Sciences Aïn Chock [Casablanca] (FSAC), Université Hassan II [Casablanca] (UH2MC), Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Traitement de l'Information Pour Images et Communications (TIPIC-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Curse of dimensionality ,Computer science ,Scalability ,CPU time ,computer.software_genre ,Content-based image retrieval ,Locality-sensitive hashing ,Full table scan ,Multidimensional indexing ,Content based image retrieval (CBIR) ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Index (publishing) ,Locality sensitive hashing ,Visual Word ,Data mining ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,computer - Abstract
International audience; This paper presents a comparative experimental study of the multidimensional indexing methods based on the approximation approach. We are particularly interested in the LSH family, which provides efficient index structures and solves the dimensionality curse problem. The goal is to understand the performance gain and the behavior of this family of methods on large-scale databases. E2LSH is compared to the KRA+-Blocks and the sequential scan methods. Two criteria are used in evaluating the E2LSH performances, namely average precision and CPU time using a database of one million image descriptors
- Published
- 2014
- Full Text
- View/download PDF
39. On-line Signature Verification on a Mobile Platform
- Author
-
Bernadette Dorizzi, Sonia Garcia-Salicetti, Nesma Houmani, Mounim A. El-Yacoubi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
Normalization (statistics) ,021110 strategic, defence & security studies ,Computer science ,Online signature ,Real-time computing ,0211 other engineering and technologies ,Verification system ,PDA device ,Online signature verification ,02 engineering and technology ,020204 information systems ,0202 electrical engineering, electronic engineering, information engineering ,Mobile conditions ,Segmentation ,Hidden Markov models ,Hidden Markov model ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Mobile device - Abstract
International audience; This paper concerns the implementation of our online signature verification system on a mobile device. Verification involves confirming or denying a person's claimed identity. Our system is based on a Hidden Markov Model and outputs two complementary scores: the first one is related to the likelihood given by the HMM of the claimed identity; the second one is related to the segmentation given by such an HMM on the input signature. A claimed identity is confirmed when the arithmetic mean of the two scores obtained on such an input signature is higher than a threshold. Also, a personal normalization of the local parameters of the signature is carried out to make the system robust to changes of platforms. A patent was submitted with special emphasis on the latter claim. This system is implemented on a mobile platform PDA Qtek 2020 ARM 400 MHz. An acquisition interface is developed allowing an enrollment step of a person by acquisition of 5 of his/her signatures, and a verification step of a given signature of a registered person. Enrolment speed depends on the complexity of the signature, while verification is performed in real time. Performance assessment of our system, carried out on two databases acquired on a PDA, shows a degradation of system performance on mobile platform compared to a fixed platform. In order to improve the performance in the case of mobility, we propose a strategy for enhancing the quality of the reference signatures at the enrolment phase.
- Published
- 2012
- Full Text
- View/download PDF
40. SC-LSH : une méthode d'indexation pour une recherche de similarité approximative dans l'espace multidimensionnel
- Author
-
Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Ecole Nationale Supérieure d'Electricité et de Mécanique [Casablanca] (ENSEM), Université Hassan II [Casablanca] (UH2MC), Laboratoire d’Informatique Systèmes et Énergies Renouvelables (École nationale supérieure d'électricité et mécanique (ENSEM)) (LISER), Green Information and Communication Technologies (University Hassan II Casablanca ) (GREENTIC), and Télécom SudParis & Institut Mines-Télécom Business School, Médiathèque
- Subjects
Nearest Neighbour Search ,[INFO.INFO-IR]Computer Science [cs]/Information Retrieval [cs.IR] ,Malédiction de la Dimension ,Content Based Image Retrieval (CBIR) ,Multidimensional Indexing ,Scalability ,Recherche d’Image par le Contenu (CBIR) ,Curse of Dimensionality ,[INFO.INFO-IR] Computer Science [cs]/Information Retrieval [cs.IR] ,Passage à l’Echelle ,LSH ,Hachage multidimensionnelle ,Recherche des Plus Proches Voisins - Abstract
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest Neighbours search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect search performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. This paper propose a new hashing algorithm to overcome the storage space problem, while keeping a good accuracy and better query time. The Experimental results on a real large scale dataset show the interest of our approach, Locality Sensitive Hashing (LSH) est l'une des techniques les plus prometteuses pour la résolution des problèmes de la recherche des plus proches voisins dans l'espace de grande dimension. Euclidien Exact LSH (E2LSH) est la variante la plus populaire du LSH qui a été appliquée avec succès dans de nombreuses applications multimédia. Toutefois, l'E2LSH présente des limitations qui affectent les performances de recherche. La principale limitation de l'E2LSH est l'espace mémoire important utilisé. Afin de parvenir à une bonne qualité de recherche, un grand nombre de tables de hachage est nécessaire. Ce papier propose un nouvel algorithme de hachage pour remédier au problème d'espace de stockage, tout en conservant la bonne qualité de recherche et un meilleur temps de calcul. Les résultats expérimentaux obtenus sur une base de données réelle à grand échelle montrent l'intérêt de notre approche
41. A combined SVM/HCRF model for activity recognition based on STIPs trajectories
- Author
-
Selmi, M., Mounim A. El Yacoubi, Dorizzi, B., Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Centre National de la Recherche Scientifique (CNRS), Traitement de l'Information Pour Images et Communications (TIPIC-SAMOVAR), and Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Activity recognition ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,STIP ,HCRF ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; In this paper, we propose a novel human activity recognition approach based on STIPs' trajectories as local descriptors of video sequences. This representation compares favorably with state of art feature extraction methods. In addition, we investigate the use of SVM/HCRF combination for temporal sequence modeling, where SVM is applied locally on short video segments to produce probability scores, the latter being considered as the input vectors to HCRF. This method constitutes a new contribution to the state of the art on activity recognition task. The obtained results demonstrate that our method is efficient and compares favorably with state of the art methods on human activity recognition
- Full Text
- View/download PDF
42. Uncovering major age-related handwriting changes by unsupervised learning
- Author
-
Gabriel Marzinotto, José Carlos Rosales Nunez, Mounim A. El Yacoubi, Sonia Garcia-Salicetti, Christian Kahindo Senge Muvingi, Hélène Kerhervé, Victoria Cristancho-Lacroix, Anne-Sophie Rigaud Monnet, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Centre National de la Recherche Scientifique (CNRS), ARMEDIA (ARMEDIA-SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Centre National de la Recherche Scientifique (CNRS)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Centre National de la Recherche Scientifique (CNRS), AP-HP - Hôpital Cochin Broca Hôtel Dieu [Paris], Maladie d'Alzheimer : marqueurs génétiques et vasculaires, neuropsychologies (EA 4468), Université Paris Descartes - Paris 5 (UPD5)-Groupe hospitalier Broca, Centre National de la Recherche Scientifique (CNRS), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Télécom SudParis & Institut Mines-Télécom Business School, Médiathèque, Département Electronique et Physique ( EPH ), Institut Mines-Télécom [Paris]-Télécom SudParis ( TSP ), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux ( SAMOVAR ), Institut Mines-Télécom [Paris]-Télécom SudParis ( TSP ) -Centre National de la Recherche Scientifique ( CNRS ), ARMEDIA ( ARMEDIA-SAMOVAR ), Institut Mines-Télécom [Paris]-Télécom SudParis ( TSP ) -Centre National de la Recherche Scientifique ( CNRS ) -Institut Mines-Télécom [Paris]-Télécom SudParis ( TSP ) -Centre National de la Recherche Scientifique ( CNRS ), Maladie d'Alzheimer : marqueurs génétiques et vasculaires, neuropsychologie ( EA 4468 ), and Université Paris Descartes - Paris 5 ( UPD5 ) -Groupe hospitalier Broca
- Subjects
[ INFO.INFO-TS ] Computer Science [cs]/Signal and Image Processing ,HW styles ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,Age characterization ,Unsupervised learning ,Two-layer clustering scheme - Abstract
International audience; Understanding how handwriting (HW) style evolves as people get older may be key for assessing the health status of elder people. It can help, for instance, distinguishing HW change due to a normal aging process from change triggered by the early manifestation of a neurodegenerative pathology. We present, in this paper, an approach, based on a 2-layer clustering scheme that allows uncovering the main styles of online HW acquired on a digitized tablet, with a special emphasis on elder HW styles. The 1st level separates HW words into writer-independent clusters according to raw spatial-dynamic HW information, such as slant, curvature, speed, acceleration and jerk. The 2nd level operates at the writer level by converting the set of words of each writer into a Bag of 1st Layer Clusters, that is augmented by a multidimensional description of his/her writing stability across words. This 2nd layer representation is input to another clustering algorithm that generates categories of writer styles along with their age distributions. We have carried out extensive experiments on a large public online HW database, augmented by HW samples acquired at Broca hospital in Paris from people mostly between 60 and 85 years old. Unlike previous works claiming that there is only one pattern of HW change with age, our study reveals basically three major HW styles associated with elder people, among which one is specific to elders while the two others are shared by other age groups
43. Reconnaissance d'activités humaines par un robot humanoïde à partir de séquences vidéo
- Author
-
Mounim A. El Yacoubi, Huilong He, Fabien Roualdes, Mouna Selmi, Bernadette Dorizzi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Traitement de l'Information Pour Images et Communications (TIPIC-SAMOVAR), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP)-Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Centre National de la Recherche Scientifique (CNRS), and Télécom SudParis & Institut Mines-Télécom Business School, Médiathèque
- Subjects
Apprentissage statistique ,Traitement d’images ,Activités humaines quotidiennes ,Robotique ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Reconnaissance par la vision - Abstract
National audience; Nous présentons dans ce papier, un système de vision, intégré dans le robot Nao pour la reconnaissance d'activités humaines réalisées par une personne dans des conditions réelles. Contrairement à une caméra fixe, le robot considéré peut filmer les activités à des endroits différents, ce qui implique qu'il doit opérer dans des conditions plus complexes, relativement aux fonds de scènes, aux conditions d'éclairage, aux angles de vues, et aux distances du robot par rapport à la personne. Le système développé est fondé sur l'extraction de trajectoires de points d'intérêt spatio-temporels uniformément et densément échantillonnés sur la scène, et l'encodage de ceux-ci par des histogrammes de gradients sur des volumes définis par leurs trajectoires. La représentation ainsi obtenue est ensuite transformée en un " sac de mots " (Bag of Words) qui est ensuite classifié par un SVM (Support Vector Machines). Ce système a été implémenté dans le robot Nao et testé dans des conditions réelles en considérant onze activités humaines. Les performances obtenues sont satisfaisantes dans l'ensemble, spécialement au regard des contraintes d'implémentation et de ressources de calcul
44. Human action recognition using continuous hmms and hog/hof silhouette representation
- Author
-
Mohamed Ibn Khedher, Mounim A. El Yacoubi, Bernadette Dorizzi, Département Electronique et Physique (EPH), Institut Mines-Télécom [Paris] (IMT)-Télécom SudParis (TSP), Services répartis, Architectures, MOdélisation, Validation, Administration des Réseaux (SAMOVAR), Centre National de la Recherche Scientifique (CNRS), and Télécom SudParis & Institut Mines-Télécom Business School, Médiathèque
- Subjects
ComputingMethodologies_PATTERNRECOGNITION ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; This paper presents an alternative to the mainstream approach of STIP-based SVM recognition for human recognition. First, it studies whether or not whole silhouette representation by Histogram-of-Oriented-Gradients (HOG) or Histogram-of-Optical-Flow (HOF) descriptors is more discriminated when compared to sparse spatio-temporal interest points (STIPs). Second, it investigates whether explicitly modeling the temporal order of features using continuous HMMs outperforms the standard Bag-of-Words (BoW) representation that overlooks such an order. When both whole silhouette representation and temporal order modeling are combined, a significant improvement is shown on the Weizmann database over STIP-based SVM recognition.
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.