1. Pillowcase covers: Counting Feynman-like graphs associated with quadratic differentials
- Author
-
Elise Goujard, Martin Möller, Institut de Mathématiques de Bordeaux (IMB), and Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
14H30 ,Pure mathematics ,Mathematics::Dynamical Systems ,quasimodular forms ,Mathematics::Number Theory ,Algebraic geometry ,01 natural sciences ,Mathematics - Geometric Topology ,Mathematics - Algebraic Geometry ,flat surfaces ,symbols.namesake ,Quadratic equation ,[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT] ,0103 physical sciences ,32G15 ,FOS: Mathematics ,Feynman diagram ,Number Theory (math.NT) ,0101 mathematics ,Algebraic Geometry (math.AG) ,Mathematics ,Mathematics - Number Theory ,81T18 ,010102 general mathematics ,Geometric topology (object) ,Geometric Topology (math.GT) ,11F11 ,16. Peace & justice ,30F30 ,[MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] ,Feynman graphs ,Number theory ,symbols ,14N10 ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,010307 mathematical physics ,Geometry and Topology ,covers - Abstract
We prove the quasimodularity of generating functions for counting pillowcase covers, with and without Siegel-Veech weight. Similar to prior work on torus covers, the proof is based on analyzing decompositions of half-translation surfaces into horizontal cylinders. It provides an alternative proof of the quasimodularity results of Eskin-Okounkov and a practical method to compute area Siegel-Veech constants. A main new technical tool is a quasi-polynomiality result for 2-orbifold Hurwitz numbers with completed cycles., Comment: Preliminary version, comments welcome!
- Published
- 2018
- Full Text
- View/download PDF