Sponges (phylum Porifera) are evolutionary ancient, sessile filter-feeders that harbor a largely diverse microbial community within their internal mesohyl matrix. Throughout this thesis project, I aimed at exploring the adaptations of these symbionts to life within their sponge host by sequencing and analyzing the genomes of a variety of bacteria from the microbiome of the Mediterranean sponge Aplysina aerophoba. Employed methods were fluorescence-activated cell sorting with subsequent multiple displacement amplification and single-cell / ‘mini-metagenome’ sequencing, and metagenomic sequencing followed by differential coverage binning. These two main approaches both aimed at obtaining genome sequences of bacterial symbionts of A. aerophoba, that were then compared to each other and to references from other environments, to gain information on adaptations to the host sponge environment and on possible interactions with the host and within the microbial community. Cyanobacteria are frequent members of the sponge microbial community. My ‘mini-metagenome’ sequencing project delivered three draft genomes of “Candidatus Synechococcus spongiarum,” the cyanobacterial symbiont of A. aerophoba and many more sponges inhabiting the photic zone. The most complete of these genomes was compared to other clades of this symbiont and to closely related free-living cyanobacterial references in a collaborative project published in Burgsdorf I*, Slaby BM* et al. (2015; *shared first authorship). Although the four clades of “Ca. Synechococcus spongiarum” from the four sponge species A. aerophoba, Ircinia variabilis, Theonella swinhoei, and Carteriospongia foliascens were approximately 99% identical on the level of 16S rRNA gene sequences, they greatly differed on the genomic level. Not only the genome sizes were different from clade to clade, but also the gene content and a number of features including proteins containing the eukaryotic-type domains leucine-rich repeats or tetratricopeptide repeats. On the other hand, the four clades shared a number of features such as ankyrin repeat domain-containing proteins that seemed to be conserved also among other microbial phyla in different sponge hosts and from different geographic locations. A possible novel mechanism for host phagocytosis evasion and phage resistance by means of an altered O antigen of the lipopolysaccharide was identified. To test previous hypotheses on adaptations of sponge-associated bacteria on a broader spectrum of the microbiome of A. aerophoba while also taking a step forward in methodology, I developed a bioinformatic pipeline to combine metagenomic Illumina short-read sequencing data with PacBio long-read data. At the beginning of this project, no pipelines to combine short-read and long-read data for metagenomics were published, and at time of writing, there are still no projects published with a comparable aim of un-targeted assembly, binning and analysis of a metagenome. I tried a variety of assembly programs and settings on a simulated test dataset reflecting the properties of the real metagenomic data. The developed assembly pipeline improved not only the overall assembly statistics, but also the quality of the binned genomes, which was evaluated by comparison to the originally published genome assemblies. The microbiome of A. aerophoba was studied from various angles in the recent years, but only genomes of the candidate phylum Poribacteria and the cyanobacterial sequences from my above-described project have been published to date. By applying my newly developed assembly pipeline to a metagenomic dataset of A. aerophoba consisting of a PacBio long-read dataset and six Illumina short-read datasets optimized for subsequent differential coverage binning, I aimed at sequencing a larger number and greater diversity of symbionts. The results of this project are currently in review by The ISME Journal. The complementation of Illumina short-read with PacBio long-read sequencing data for binning of this highly complex metagenome greatly improved the overall assembly statistics and improved the quality of the binned genomes. Thirty-seven genomes from 13 bacterial phyla and candidate phyla were binned representing the most prominent members of the microbiome of A. aerophoba. A statistical comparison revealed an enrichment of genes involved in restriction modification and toxin-antitoxin systems in most symbiont genomes over selected reference genomes. Both are defense features against incoming foreign DNA, which may be important for sponge symbionts due to the sponge’s filtration and phagocytosis activity that exposes the symbionts to high levels of free DNA. Also host colonization and matrix utilization features were significantly enriched. Due to the diversity of the binned symbiont genomes, a within-symbionts genome comparison was possible, that revealed three guilds of symbionts characterized by i) nutritional specialization on the metabolization of carnitine, ii) specialization on sulfated polysaccharides, and iii) apparent nutritional generalism. Both carnitine and sulfated polysaccharides are abundant in the sponge extracellular matrix and therefore available to the sponge symbionts as substrates. In summary, the genomes of the diverse community of symbionts in A. aerophoba were united in their defense features, but specialized regarding their nutritional preferences.