1. The statistical geometry of transcriptome divergence in cell-type evolution and cancer
- Author
-
Liang, C, Alam, I, Albanese, D, Altschuler, G, Andersson, R, Arakawa, T, Archer, J, Arner, E, Arner, P, Babina, M, Baillie, K, Bajic, V, Baker, S, Balic, A, Balwierz, P, Beckhouse, A, Bertin, N, Blake, Ja, Blumenthal, A, Bodega, B, Bonetti, A, Briggs, J, Brombacher, F, Burroughs, M, Califano, A, Cannistraci, C, Carbajo, D, Carninci, P, Chen, Yang, Chierici, M, Ciani, Y, Clevers, H, Dalla, Emiliano, Daub, C, Davis, C, De Hoon, M, De Lima Morais, D, Dermar, M, Diehl, A, Dimont, E, Dohl, T, Drabros, F, Edge, A, Edinger, M, Ekwall, K, Endoh, M, Enomoto, H, Fagiolini, M, Fairbairn, L, Fang, H, Farach Carson, Mc, Faulkner, G, Favorov, A, Fisher, M, Forrest, A, Francescatto, M, Freeman, T, Frith, M, Fujita, R, Fukuda, S, Furlanello, C, Furuno, M, Furusawa, J, Geijtenbeek, Tb, Gibson, A, Gingeras, T, Goldowithz, D, Gough, J, Guhl, S, Guler, R, Gustincich, Stefano, Ha, T, Haberle, V, Hamaguchi, M, Hara, M, Harbers, M, Harshbarger, J, Hasegawa, A, Hasegawa, Y, Hashimoto, T, Hayashizaki, Y, Herlyn, M, Heutink, P, Hide, W, Hitchens, K, Ho Sui, S, Hofmann, O, Hoof, I, Hori, F, Hume, D, Huminiecki, L, Iida, K, Ikawa, T, Ishizu, Y, Itoh, M, Jankovic, B, Jia, H, Jorgensen, M, Joshi, A, Jurman, G, Kaczkowski, B, Kai, C, Kaida, K, Kaiho, A, Kajiyama, K, Kanamori Katayama, M, Kasianov, A, Kasukawa, T, Katayama, S, Kato Ishikawa, S, Kawaguchi, S, Kawai, J, Kawaji, H, Kawamoto, H, Kawamura, Y, Kawashima, T, Kempfle, J, Kenna, T, Kere, J, Khachigian, L, Kitamura, T, Klinken, P, Knox, A, Kojima, M, Kojima, S, Kondo, N, Koseki, H, Koyasu, S, Krampitz, S, Kubosaki, A, Kulakovskiy, I, Kwon, At, Laros, J, Lassmann, T, Lenhard, B, Lennartsson, A, Li, K, Lilji, B, Lipovich, L, Lizio, M, Mackay Sim, A, Makeev, V, Manabe, R, Mar, J, Marchand, B, Mathelier, A, Medvedeva, Y, Meehan, Tf, Mejhert, N, Meynert, A, Mizuno, Y, Morikawa, H, Morimoto, M, Moro, K, Motakis, E, Motohashi, H, Mummery, C, Mungall, Cj, Murata, M, Nagao Sato, S, Nakachi, Y, Nakahara, F, Nakamura, T, Nakamura, Y, Nakazato, K, Ninomiya Fukuda, N, Nishiyori Sueki, H, Noma, S, Nozaki, T, Ogishima, S, Ohkura, N, Ohmiya, H, Ohno, H, Ohshima, M, Okada Hatakeyama, M, Okazaki, Y, Orlando, V, Ovchinnikov, D, Pain, A, Passier, R, Persson, H, Piazza, Silvano, Plessy, C, Pradhan Bhatt, S, Prendergast, J, Rackham, O, Ramilowski, J, Rashid, M, Ravasi, T, Rehli, M, Rizzu, P, Roncador, M, Roy, S, Rye, M, Saijyo, E, Sajantila, A, Saka, A, Sakaguchi, S, Sakai, M, Sandelin, A, Sato, H, Satoh, H, Suzana, S, Alka, S, Schaefer, U, Schmeier, S, Schmidl, C, Schneider, C, Schultes, Ea, Schulze Tanzil, G, Schwegmann, A, Semple, C, Sengstag, T, Severin, J, Sheng, G, Shimoji, H, Shimoni, Y, Shin, J, Simon, C, Sugiyama, D, Sugiyama, T, Summers, K, Suzuki, H, Suzuki, M, Suzuki, N, Swoboda, R, Hoen P, T, Tagami, M, Takahashi, N, Takai, J, Tanaka, H, Tatsukawa, H, Tatum, Z, Taylor, M, Thompson, M, Toyoda, H, Toyoda, T, Valen, E, Van De Wetering, M, Van Den Berg, L, Van Nimwegen, E, Verardo, R, Vijayan, D, Vitezic, M, Vorontzov, I, Wasserman, W, Watanabe, S, Wells, C, Winteringham, L, Wolvetang, E, Wood, Ej, Yamaguchi, Y, Yamamoto, M, Yoneda, M, Yonekura, Y, Yoshida, Shin'Ichirou, Young, R, Zabierowski, Se, Zhang, P, Zhao, X, Zucchelli, Silvia, Forrest, Ar, Wagner, Gp, Hubrecht Institute for Developmental Biology and Stem Cell Research, AII - Amsterdam institute for Infection and Immunity, Infectious diseases, and Experimental Immunology
- Subjects
Cell type ,General Physics and Astronomy ,rna-seq data ,phylogenetic networks ,Biology ,ENCODE ,General Biochemistry, Genetics and Molecular Biology ,Divergence ,Transcriptome ,Models ,Settore BIO/13 - Biologia Applicata ,Neoplasms ,Humans ,Genetics ,Models, Statistical ,Multidisciplinary ,Statistical model ,General Chemistry ,Statistical ,Biological Evolution ,Body plan ,Tree structure ,Evolutionary biology ,Cancer cell - Abstract
In evolution, body plan complexity increases due to an increase in the number of individualized cell types. Yet, there is very little understanding of the mechanisms that produce this form of organismal complexity. One model for the origin of novel cell types is the sister cell-type model. According to this model, each cell type arises together with a sister cell type through specialization from an ancestral cell type. A key prediction of the sister cell-type model is that gene expression profiles of cell types exhibit tree structure. Here we present a statistical model for detecting tree structure in transcriptomic data and apply it to transcriptomes from ENCODE and FANTOM5. We show that transcriptomes of normal cells harbour substantial amounts of hierarchical structure. In contrast, cancer cell lines have less tree structure, suggesting that the emergence of cancer cells follows different principles from that of evolutionary cell-type origination.
- Published
- 2015
- Full Text
- View/download PDF