1. SCAF: Skip-Connections in Auto-encoder for Face Alignment with Few Annotated Data
- Author
-
Dornier, Martin, Gosselin, Philippe-Henri, Raymond, Christian, Ricquebourg, Yann, Coüasnon, Bertrand, InterDigital R&D France, Intuitive user-interaction for document (INTUIDOC), SIGNAL, IMAGE ET LANGAGE (IRISA-D6), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université de Bretagne Sud (UBS)-École normale supérieure - Rennes (ENS Rennes)-Institut National de Recherche en Informatique et en Automatique (Inria)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Université de Rennes (UR), and This work was granted access to the HPC resources of IDRIS under the allocation 2021-AD011012376 made by GENC
- Subjects
Active learning ,[INFO]Computer Science [cs] ,Face alignment ,Semi-supervised training - Abstract
International audience; Supervised face alignment methods need large amounts of training data to achieve good performance in terms of accuracy and generalization. However face alignment datasets rarely exceed a few thousand samples making these methods prone to overfitting on the specific training dataset. Semi-supervised methods like TS 3 or 3FabRec have emerged to alleviate this issue by using labeled and unlabeled data during the training. In this paper we propose Skip-Connections in Auto-encoder for Face alignment (SCAF), we build on 3FabRec by adding skip-connections between the encoder and the decoder. These skip-connections lead to better landmark predictions, especially on challenging examples. We also apply for the first time active learning to the face alignment task and introduce a new acquisition function, the Negative Neighborhood Magnitude, specially designed to assess the quality of heatmaps. These two proposals show their effectiveness on several face alignment datasets when training with limited data.
- Published
- 2022
- Full Text
- View/download PDF