1. Inner disk clearing around the Herbig Ae star HD\,139614: Evidence for a planet-induced gap ?
- Author
-
A. Crida, Jean-François Gonzalez, Lucas Labadie, Johan Olofsson, Bruno Lopez, Jean-Charles Augereau, Andres Carmona, W. F. Thi, Jacques Kluska, J.-B. Le Bouquin, Alexis Matter, Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), I. Physikalisches Institut, Universität zu Köln, University of Exeter, Institut Universitaire de France (IUF), Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche (M.E.N.E.S.R.), Universidad Autónoma de Madrid (UAM), Konkoly Observatory, Research Centre for Astronomy and Earth Sciences [Budapest], Hungarian Academy of Sciences (MTA)-Hungarian Academy of Sciences (MTA), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Extraterrestrische Physik (MPE), Max-Planck-Institut für Astronomie (MPIA), Max-Planck-Gesellschaft, ANR-11-IDEX-0007,Avenir L.S.E.,PROJET AVENIR LYON SAINT-ETIENNE(2011), ANR-10-BLAN-0511,POLCA,Percées astrophysiques grâce au traitement de données interférométriques polychromatiques(2010), and UAM. Departamento de Física Teórica
- Subjects
Protoplanetary disks ,FOS: Physical sciences ,Astrophysics ,stars: pre-main sequence ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Star (graph theory) ,01 natural sciences ,Planet ,instrumentation: high angular resolution ,0103 physical sciences ,Radiative transfer ,Astrophysics::Solar and Stellar Astrophysics ,individual: HD 139614 [Stars] ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Physics ,Earth and Planetary Astrophysics (astro-ph.EP) ,Pre-main sequence [Stars] ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,010308 nuclear & particles physics ,Spatially resolved ,protoplanetary disks ,Fragmentation (computing) ,Giant planet ,Física ,Astronomy and Astrophysics ,stars: individual: HD 139614 ,Photoevaporation ,Interferometry ,13. Climate action ,Space and Planetary Science ,techniques: interferometric ,radiative transfer ,interferometric [Techniques] ,Astrophysics::Earth and Planetary Astrophysics ,High angular resolution [Instrumentation] ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Astronomy and Astrophysics 586 (2016): A11 Reproduced with permission from Astronomy & Astrophysics, Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ∼103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ∼4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction., Matter acknowledges financial support from the Centre National d’Études Spatiales (CNES). J.-F. Gonzalez is grateful to the LABEX Lyon Institute of Origins (ANR-10-LABX-0066) of the Université de Lyon for its financial support within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) of the French government operated by the ANR. This work is supported by the French ANR POLCA project (Processing of polychromatic interferometric data for Astrophysics, ANR-10-BLAN-0511)
- Published
- 2015
- Full Text
- View/download PDF