As an abundant, nontoxic and inexpensive one-carbon (C1) feedstock, carbon dioxide (CO2) has been used as the monomer for preparing a variety of polymers via copolymerization process, such as polycarbonates, poly(urethane)s and polyureas that are linear chain structure. Due to the limit in designing multi-functionalized comonomers, using CO2 to synthesize polymers with different architectures, such as hyperbranched polymers (HBPs), is rarely reported. Recently, Qin and Tang et al. have reported a successful synthesis of CO2-based hyperbranched poly(alkynoate)s (hb-PAs) via threecomponent polymerization of CO2, multi-functionalized alkyne and dihalides under mild conditions. The resultant polymer possessed two types of ethynyl groups with different reactivities towards the same types of amines, so it could undergo siteselective, multi-step functionalizations. Taking advantage of this facile and efficient site-selective functionalization strategy, they prepared a hyperbranched polyprodrug amphiphile with high drug loading content, an artificial light-harvesting system with high energy transfer efficiency and pure white light-emitting polymeric materials. This work provides a new method to convert CO2 into multifunctional HBPs that are platform polymers for diverse functionalizations. [ABSTRACT FROM AUTHOR]