10 results on '"Buchin, Anatoly"'
Search Results
2. Multi-modal characterization and simulation of human epileptic circuitry
- Author
-
Buchin, Anatoly, de Frates, Rebecca, Nandi, Anirban, Mann, Rusty, Chong, Peter, Ng, Lindsay, Miller, Jeremy, Hodge, Rebecca, Kalmbach, Brian, Bose, Soumita, Rutishauser, Ueli, McConoughey, Stephen, Lein, Ed, Berg, Jim, Sorensen, Staci, Gwinn, Ryder, Koch, Christof, Ting, Jonathan, and Anastassiou, Costas A.
- Published
- 2022
- Full Text
- View/download PDF
3. Human neocortical expansion involves glutamatergic neuron diversification
- Author
-
Berg, Jim, Sorensen, Staci A., Ting, Jonathan T., Miller, Jeremy A., Chartrand, Thomas, Buchin, Anatoly, Bakken, Trygve E., Budzillo, Agata, Dee, Nick, Ding, Song-Lin, Gouwens, Nathan W., Hodge, Rebecca D., Kalmbach, Brian, Lee, Changkyu, Lee, Brian R., Alfiler, Lauren, Baker, Katherine, Barkan, Eliza, Beller, Allison, Berry, Kyla, Bertagnolli, Darren, Bickley, Kris, Bomben, Jasmine, Braun, Thomas, Brouner, Krissy, Casper, Tamara, Chong, Peter, Crichton, Kirsten, Dalley, Rachel, de Frates, Rebecca, Desta, Tsega, Lee, Samuel Dingman, D’Orazi, Florence, Dotson, Nadezhda, Egdorf, Tom, Enstrom, Rachel, Farrell, Colin, Feng, David, Fong, Olivia, Furdan, Szabina, Galakhova, Anna A., Gamlin, Clare, Gary, Amanda, Glandon, Alexandra, Goldy, Jeff, Gorham, Melissa, Goriounova, Natalia A., Gratiy, Sergey, Graybuck, Lucas, Gu, Hong, Hadley, Kristen, Hansen, Nathan, Heistek, Tim S., Henry, Alex M., Heyer, Djai B., Hill, DiJon, Hill, Chris, Hupp, Madie, Jarsky, Tim, Kebede, Sara, Keene, Lisa, Kim, Lisa, Kim, Mean-Hwan, Kroll, Matthew, Latimer, Caitlin, Levi, Boaz P., Link, Katherine E., Mallory, Matthew, Mann, Rusty, Marshall, Desiree, Maxwell, Michelle, McGraw, Medea, McMillen, Delissa, Melief, Erica, Mertens, Eline J., Mezei, Leona, Mihut, Norbert, Mok, Stephanie, Molnar, Gabor, Mukora, Alice, Ng, Lindsay, Ngo, Kiet, Nicovich, Philip R., Nyhus, Julie, Olah, Gaspar, Oldre, Aaron, Omstead, Victoria, Ozsvar, Attila, Park, Daniel, Peng, Hanchuan, Pham, Trangthanh, Pom, Christina A., Potekhina, Lydia, Rajanbabu, Ramkumar, Ransford, Shea, Reid, David, Rimorin, Christine, Ruiz, Augustin, Sandman, David, Sulc, Josef, Sunkin, Susan M., Szafer, Aaron, Szemenyei, Viktor, Thomsen, Elliot R., Tieu, Michael, Torkelson, Amy, Trinh, Jessica, Tung, Herman, Wakeman, Wayne, Waleboer, Femke, Ward, Katelyn, Wilbers, René, Williams, Grace, Yao, Zizhen, Yoon, Jae-Geun, Anastassiou, Costas, Arkhipov, Anton, Barzo, Pal, Bernard, Amy, Cobbs, Charles, de Witt Hamer, Philip C., Ellenbogen, Richard G., Esposito, Luke, Ferreira, Manuel, Gwinn, Ryder P., Hawrylycz, Michael J., Hof, Patrick R., Idema, Sander, Jones, Allan R., Keene, C. Dirk, Ko, Andrew L., Murphy, Gabe J., Ng, Lydia, Ojemann, Jeffrey G., Patel, Anoop P., Phillips, John W., Silbergeld, Daniel L., Smith, Kimberly, Tasic, Bosiljka, Yuste, Rafael, Segev, Idan, de Kock, Christiaan P. J., Mansvelder, Huibert D., Tamas, Gabor, Zeng, Hongkui, Koch, Christof, and Lein, Ed S.
- Published
- 2021
- Full Text
- View/download PDF
4. Author Correction: Human neocortical expansion involves glutamatergic neuron diversification
- Author
-
Berg, Jim, Sorensen, Staci A., Ting, Jonathan T., Miller, Jeremy A., Chartrand, Thomas, Buchin, Anatoly, Bakken, Trygve E., Budzillo, Agata, Dee, Nick, Ding, Song-Lin, Gouwens, Nathan W., Hodge, Rebecca D., Kalmbach, Brian, Lee, Changkyu, Lee, Brian R., Alfiler, Lauren, Baker, Katherine, Barkan, Eliza, Beller, Allison, Berry, Kyla, Bertagnolli, Darren, Bickley, Kris, Bomben, Jasmine, Braun, Thomas, Brouner, Krissy, Casper, Tamara, Chong, Peter, Crichton, Kirsten, Dalley, Rachel, de Frates, Rebecca, Desta, Tsega, Lee, Samuel Dingman, D’Orazi, Florence, Dotson, Nadezhda, Egdorf, Tom, Enstrom, Rachel, Farrell, Colin, Feng, David, Fong, Olivia, Furdan, Szabina, Galakhova, Anna A., Gamlin, Clare, Gary, Amanda, Glandon, Alexandra, Goldy, Jeff, Gorham, Melissa, Goriounova, Natalia A., Gratiy, Sergey, Graybuck, Lucas, Gu, Hong, Hadley, Kristen, Hansen, Nathan, Heistek, Tim S., Henry, Alex M., Heyer, Djai B., Hill, DiJon, Hill, Chris, Hupp, Madie, Jarsky, Tim, Kebede, Sara, Keene, Lisa, Kim, Lisa, Kim, Mean-Hwan, Kroll, Matthew, Latimer, Caitlin, Levi, Boaz P., Link, Katherine E., Mallory, Matthew, Mann, Rusty, Marshall, Desiree, Maxwell, Michelle, McGraw, Medea, McMillen, Delissa, Melief, Erica, Mertens, Eline J., Mezei, Leona, Mihut, Norbert, Mok, Stephanie, Molnar, Gabor, Mukora, Alice, Ng, Lindsay, Ngo, Kiet, Nicovich, Philip R., Nyhus, Julie, Olah, Gaspar, Oldre, Aaron, Omstead, Victoria, Ozsvar, Attila, Park, Daniel, Peng, Hanchuan, Pham, Trangthanh, Pom, Christina A., Potekhina, Lydia, Rajanbabu, Ramkumar, Ransford, Shea, Reid, David, Rimorin, Christine, Ruiz, Augustin, Sandman, David, Sulc, Josef, Sunkin, Susan M., Szafer, Aaron, Szemenyei, Viktor, Thomsen, Elliot R., Tieu, Michael, Torkelson, Amy, Trinh, Jessica, Tung, Herman, Wakeman, Wayne, Waleboer, Femke, Ward, Katelyn, Wilbers, René, Williams, Grace, Yao, Zizhen, Yoon, Jae-Geun, Anastassiou, Costas, Arkhipov, Anton, Barzo, Pal, Bernard, Amy, Cobbs, Charles, de Witt Hamer, Philip C., Ellenbogen, Richard G., Esposito, Luke, Ferreira, Manuel, Gwinn, Ryder P., Hawrylycz, Michael J., Hof, Patrick R., Idema, Sander, Jones, Allan R., Keene, C. Dirk, Ko, Andrew L., Murphy, Gabe J., Ng, Lydia, Ojemann, Jeffrey G., Patel, Anoop P., Phillips, John W., Silbergeld, Daniel L., Smith, Kimberly, Tasic, Bosiljka, Yuste, Rafael, Segev, Idan, de Kock, Christiaan P. J., Mansvelder, Huibert D., Tamas, Gabor, Zeng, Hongkui, Koch, Christof, and Lein, Ed S.
- Published
- 2022
- Full Text
- View/download PDF
5. Single-neuron models linking electrophysiology, morphology, and transcriptomics across cortical cell types
- Author
-
Nandi, Anirban, Chartrand, Thomas, Van Geit, Werner, Buchin, Anatoly, Yao, Zizhen, Lee, Soo Yeun, Wei, Yina, Kalmbach, Brian, Lee, Brian, Lein, Ed, Berg, Jim, Sümbül, Uygar, Koch, Christof, Tasic, Bosiljka, and Anastassiou, Costas A.
- Published
- 2022
- Full Text
- View/download PDF
6. Reduced Efficacy of the KCC2 Cotransporter Promotes Epileptic Oscillations in a Subiculum Network Model.
- Author
-
Buchin, Anatoly, Chizhov, Anton, Huberfeld, Gilles, Miles, Richard, and Gutkin, Boris S.
- Subjects
- *
DIAGNOSIS of epilepsy , *PEOPLE with epilepsy , *OSCILLATING chemical reactions , *POTASSIUM chloride , *PYRAMIDAL neurons , *INTERNEURONS , *MEDICAL care - Abstract
Pharmacoresistant epilepsy is a chronic neurological condition in which a basal brain hyperexcitability results in paroxysmal hypersynchronous neuronal discharges. Human temporal lobe epilepsy has been associated with dysfunction or loss of the potassium-chloride cotransporter KCC2 in a subset of pyramidal cells in the subiculum, a key structure generating epileptic activities. KCC2 regulates intraneuronal chloride and extracellular potassium levels by extruding both ions. Absence of effective KCC2 may alter the dynamics of chloride and potassium levels during repeated activation of GABAergic synapses due to interneuron activity. In turn, such GABAergic stress may itself affect Cl- regulation. Such changes in ionic homeostasis may switch GABAergic signaling from inhibitory to excitatory in affected pyramidal cells and also increase neuronal excitability. Possibly these changes contribute to periodic bursting in pyramidal cells, an essential component in the onset of ictal epileptic events. We tested this hypothesis with a computational model of a subicular network with realistic connectivity. The pyramidal cell model explicitly incorporated the cotransporter KCC2 and its effects on the internal/external chloride and potassium levels. Our network model suggested the loss of KCC2 in a critical number of pyramidal cells increased external potassium and intracellular chloride concentrations leading to seizure-like field potential oscillations. These oscillations included transient discharges leading to ictal-like field events with frequency spectra as in vitro. Restoration of KCC2 function suppressed seizure activity and thus may present a useful therapeutic option. These simulations therefore suggest that reduced KCC2 cotransporter activity alone may underlie the generation of ictal discharges. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
7. Inverse Stochastic Resonance in Cerebellar Purkinje Cells.
- Author
-
Buchin, Anatoly, Rieubland, Sarah, Häusser, Michael, Gutkin, Boris S., and Roth, Arnd
- Subjects
- *
PURKINJE cells , *STOCHASTIC analysis , *BRAIN function localization , *HYPERPOLARIZATION (Cytology) , *COMPUTED tomography - Abstract
Purkinje neurons play an important role in cerebellar computation since their axons are the only projection from the cerebellar cortex to deeper cerebellar structures. They have complex internal dynamics, which allow them to fire spontaneously, display bistability, and also to be involved in network phenomena such as high frequency oscillations and travelling waves. Purkinje cells exhibit type II excitability, which can be revealed by a discontinuity in their f-I curves. We show that this excitability mechanism allows Purkinje cells to be efficiently inhibited by noise of a particular variance, a phenomenon known as inverse stochastic resonance (ISR). While ISR has been described in theoretical models of single neurons, here we provide the first experimental evidence for this effect. We find that an adaptive exponential integrate-and-fire model fitted to the basic Purkinje cell characteristics using a modified dynamic IV method displays ISR and bistability between the resting state and a repetitive activity limit cycle. ISR allows the Purkinje cell to operate in different functional regimes: the all-or-none toggle or the linear filter mode, depending on the variance of the synaptic input. We propose that synaptic noise allows Purkinje cells to quickly switch between these functional regimes. Using mutual information analysis, we demonstrate that ISR can lead to a locally optimal information transfer between the input and output spike train of the Purkinje cell. These results provide the first experimental evidence for ISR and suggest a functional role for ISR in cerebellar information processing. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
8. h-Channels Contribute to Divergent Intrinsic Membrane Properties of Supragranular Pyramidal Neurons in Human versus Mouse Cerebral Cortex.
- Author
-
Kalmbach, Brian E., Buchin, Anatoly, Long, Brian, Close, Jennie, Nandi, Anirban, Miller, Jeremy A., Bakken, Trygve E., Hodge, Rebecca D., Chong, Peter, de Frates, Rebecca, Dai, Kael, Maltzer, Zoe, Nicovich, Philip R., Keene, C. Dirk, Silbergeld, Daniel L., Gwinn, Ryder P., Cobbs, Charles, Ko, Andrew L., Ojemann, Jeffrey G., and Koch, Christof
- Subjects
- *
PYRAMIDAL neurons , *CEREBRAL cortex , *GENE expression , *ION channels , *RNA sequencing - Abstract
Summary Gene expression studies suggest that differential ion channel expression contributes to differences in rodent versus human neuronal physiology. We tested whether h-channels more prominently contribute to the physiological properties of human compared to mouse supragranular pyramidal neurons. Single-cell/nucleus RNA sequencing revealed ubiquitous HCN1 -subunit expression in excitatory neurons in human, but not mouse, supragranular layers. Using patch-clamp recordings, we found stronger h-channel-related membrane properties in supragranular pyramidal neurons in human temporal cortex, compared to mouse supragranular pyramidal neurons in temporal association area. The magnitude of these differences depended upon cortical depth and was largest in pyramidal neurons in deep L3. Additionally, pharmacologically blocking h-channels produced a larger change in membrane properties in human compared to mouse neurons. Finally, using biophysical modeling, we provide evidence that h-channels promote the transfer of theta frequencies from dendrite-to-soma in human L3 pyramidal neurons. Thus, h-channels contribute to between-species differences in a fundamental neuronal property. Highlights • Ubiquitous HCN1 expression in human, but not mouse, supragranular pyramidal neurons • I h contributes substantially to human supragranular pyramidal neuron physiology • Little contribution of I h to mouse supragranular pyramidal neuron properties • I h enhances theta band sensitivity of human supragranular pyramidal neurons h-channel-related gene expression is more prominent in human than mouse supragranular cortex. Consequently, h-channels contribute to supragranular pyramidal neuron physiology more in human than mouse neocortex. These differences produce fundamental differences in synaptic integration in human supragranular pyramidal neurons. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
9. Associations between in vitro , in vivo and in silico cell classes in mouse primary visual cortex.
- Author
-
Wei Y, Nandi A, Jia X, Siegle JH, Denman D, Lee SY, Buchin A, Geit WV, Mosher CP, Olsen S, and Anastassiou CA
- Abstract
The brain consists of many cell classes yet in vivo electrophysiology recordings are typically unable to identify and monitor their activity in the behaving animal. Here, we employed a systematic approach to link cellular, multi-modal in vitro properties from experiments with in vivo recorded units via computational modeling and optotagging experiments. We found two one-channel and six multi-channel clusters in mouse visual cortex with distinct in vivo properties in terms of activity, cortical depth, and behavior. We used biophysical models to map the two one- and the six multi-channel clusters to specific in vitro classes with unique morphology, excitability and conductance properties that explain their distinct extracellular signatures and functional characteristics. These concepts were tested in ground-truth optotagging experiments with two inhibitory classes unveiling distinct in vivo properties. This multi-modal approach presents a powerful way to separate in vivo clusters and infer their cellular properties from first principles.
- Published
- 2023
- Full Text
- View/download PDF
10. Adaptation and Inhibition Control Pathological Synchronization in a Model of Focal Epileptic Seizure.
- Author
-
Buchin A, Kerr CC, Huberfeld G, Miles R, and Gutkin B
- Subjects
- Adolescent, Adult, Electroencephalography methods, Epilepsy pathology, Female, Hippocampus pathology, Hippocampus physiopathology, Humans, Male, Middle Aged, Models, Neurological, Neurons physiology, Seizures pathology, Young Adult, Adaptation, Physiological physiology, Epilepsy physiopathology, Limbic System physiopathology, Seizures physiopathology
- Abstract
Pharmacoresistant epilepsy is a common neurological disorder in which increased neuronal intrinsic excitability and synaptic excitation lead to pathologically synchronous behavior in the brain. In the majority of experimental and theoretical epilepsy models, epilepsy is associated with reduced inhibition in the pathological neural circuits, yet effects of intrinsic excitability are usually not explicitly analyzed. Here we present a novel neural mass model that includes intrinsic excitability in the form of spike-frequency adaptation in the excitatory population. We validated our model using local field potential (LFP) data recorded from human hippocampal/subicular slices. We found that synaptic conductances and slow adaptation in the excitatory population both play essential roles for generating seizures and pre-ictal oscillations. Using bifurcation analysis, we found that transitions towards seizure and back to the resting state take place via Andronov-Hopf bifurcations. These simulations therefore suggest that single neuron adaptation as well as synaptic inhibition are responsible for orchestrating seizure dynamics and transition towards the epileptic state.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.