1. SCAN-IT: Domain segmentation of spatial transcriptomics images by graph neural network
- Author
-
Cang, Z, Ning, X, Nie, A, Xu, M, and Zhang, J
- Abstract
Complex biological tissues consist of numerous cells in a highly coordinated manner and carry out various biological functions. Therefore, segmenting a tissue into spatial and functional domains is critically important for understanding and controlling the biological functions. The emerging spatial transcriptomics technologies allow simultaneous measurements of thousands of genes with precise spatial information, providing an unprecedented opportunity for dissecting biological tissues. However, how to utilize such noisy, sparse, and high dimensional data for tissue segmentation remains a major challenge. Here, we develop a deep learning-based method, named SCAN-IT by transforming the spatial domain identification problem into an image segmentation problem, with cells mimicking pixels and expression values of genes within a cell representing the color channels. Specifically, SCAN-IT relies on geometric modeling, graph neural networks, and an informatics approach, DeepGraphInfomax. We demonstrate that SCAN-IT can handle datasets from a wide range of spatial transcriptomics techniques, including the ones with high spatial resolution but low gene coverage as well as those with low spatial resolution but high gene coverage. We show that SCAN-IT outperforms state-of-the-art methods using a benchmark dataset with ground truth domain annotations.
- Published
- 2021