10 results on '"David Forgacs"'
Search Results
2. Genomic evaluation of hybridization in historic and modern North American Bison (Bison bison)
- Author
-
Sam Stroupe, David Forgacs, Andrew Harris, James N. Derr, and Brian W. Davis
- Subjects
Medicine ,Science - Abstract
Abstract During the late nineteenth century North American bison underwent a significant population bottleneck resulting in a reduction in population size of over 99% and a species-level near-extinction event. Factors responsible for this destruction included indiscriminate killing, loss of access to suitable habitat, and diseases. At the nadir of this population crash, very few wild plains bison survived and were restricted to Yellowstone National Park, USA and a small number of wild wood bison remained in Wood Buffalo National Park, Canada. However, most surviving bison in the late 1800’s were maintained by cattle ranchers in private herds where hybridization between bison with various breeds of domestic cattle was often encouraged. Over the last 20 years, the legacy of this introgression has been identified using mitochondrial DNA and limited nuclear microsatellite analyses. However, no genome-wide assessment has been performed, and some herds were believed to be free of introgression based on current genetic testing strategies. Herein, we report detailed analyses using whole genome sequencing from nineteen modern and six historical bison, chosen to represent the major lineages of bison, to identify and quantitate signatures of nuclear introgression in their recent (within 200 years) history. Both low and high coverage genomes provided evidence for recent introgression, including animals from Yellowstone, Wind Cave, and Elk Island National Parks which were previously thought to be free from hybridization with domestic cattle. We employed multiple approaches, including one developed for this work, to identify putative cattle haplotypes in each bison genome. These regions vary greatly in size and frequency by sample and herd, though we detected domestic cattle introgression in all bison genomes tested. Since our sampling strategy spanned across the diversity of modern bison populations, these finding are best explained by multiple historical hybridization events between these two species with significant genetic recombination over the last 200 years. Our results demonstrate that whole genome sequencing approaches are required to accurately quantitate cattle introgression in bison.
- Published
- 2022
- Full Text
- View/download PDF
3. PARIS and SPARTA: Finding the Achilles’ Heel of SARS-CoV-2
- Author
-
Viviana Simon, Vamsi Kota, Ryan F. Bloomquist, Hannah B. Hanley, David Forgacs, Savita Pahwa, Suresh Pallikkuth, Loren G. Miller, Joanna Schaenman, Michael R. Yeaman, David Manthei, Joshua Wolf, Aditya H. Gaur, Jeremie H. Estepp, Komal Srivastava, Juan Manuel Carreño, Frans Cuevas, Ali H. Ellebedy, Aubree Gordon, Riccardo Valdez, Sarah Cobey, Elaine F. Reed, Ravindra Kolhe, Paul G. Thomas, Stacey Schultz-Cherry, Ted M. Ross, and Florian Krammer
- Subjects
COVID-19 ,SARS-CoV-2 ,antibodies ,cohort study ,reinfection ,Microbiology ,QR1-502 - Abstract
ABSTRACT To understand reinfection rates and correlates of protection for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), we established eight different longitudinal cohorts in 2020 under the umbrella of the PARIS (Protection Associated with Rapid Immunity to SARS-CoV-2)/SPARTA (SARS SeroPrevalence And Respiratory Tract Assessment) studies. Here, we describe the PARIS/SPARTA cohorts, the harmonized assays and analysis that are performed across the cohorts, as well as case definitions for SARS-CoV-2 infection and reinfection that have been established by the team of PARIS/SPARTA investigators. IMPORTANCE Determining reinfection rates and correlates of protection against SARS-CoV-2 infection induced by both natural infection and vaccination is of high significance for the prevention and control of coronavirus disease 2019 (COVID-19). Furthermore, understanding reinfections or infection after vaccination and the role immune escape plays in these scenarios will inform the need for updates of the current SARS-CoV-2 vaccines and help update guidelines suitable for the postpandemic world.
- Published
- 2022
- Full Text
- View/download PDF
4. Antibody affinity maturation and cross-variant activity following SARS-CoV-2 mRNA vaccination: Impact of prior exposure and sex
- Author
-
Juanjie Tang, Gabrielle Grubbs, Youri Lee, Chang Huang, Supriya Ravichandran, David Forgacs, Hana Golding, Ted M Ross, and Surender Khurana
- Subjects
SARS-CoV-2 ,COVID-19 ,Vaccine ,Virus neutralization ,Affinity maturation ,Sex differences ,Medicine ,Medicine (General) ,R5-920 - Abstract
Background: Limited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences. Methods: We elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants. Findings: Higher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes. Interpretation: This study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants. Funding: The antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.
- Published
- 2021
- Full Text
- View/download PDF
5. SARS-CoV-2 mRNA Vaccines Elicit Different Responses in Immunologically Naïve and Pre-Immune Humans
- Author
-
David Forgacs, Hyesun Jang, Rodrigo B. Abreu, Hannah B. Hanley, Jasper L. Gattiker, Alexandria M. Jefferson, and Ted M. Ross
- Subjects
SARS-CoV-2 ,coronavirus ,vaccination ,immunization ,pre-immune ,neutralization ,Immunologic diseases. Allergy ,RC581-607 - Abstract
As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naïve participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naïve participants (p
- Published
- 2021
- Full Text
- View/download PDF
6. Evaluation of fecal samples as a valid source of DNA by comparing paired blood and fecal samples from American bison (Bison bison)
- Author
-
David Forgacs, Rick L. Wallen, Amy L. Boedeker, and James N. Derr
- Subjects
Bison ,Yellowstone National Park ,Fecal DNA ,Microsatellite ,STR ,Heterozygosity ,Genetics ,QH426-470 - Abstract
Abstract Background The collection and analysis of fecal DNA is a common practice, especially when dealing with wildlife species that are difficult to track or capture. While fecal DNA is known to be lower quality than traditional sources of DNA, such as blood or other tissues, few investigations have verified fecal samples as a valid source of DNA by directly comparing the results to high quality DNA samples from the same individuals. Our goal was to compare DNA from fecal and blood samples from the same 50 American plains bison (Bison bison) from Yellowstone National Park, analyze 35 short tandem repeat (STR) loci for genotyping efficiency, and compare heterozygosity estimates. Results We discovered that some of the fecal-derived genotypes obtained were significantly different from the blood-derived genotypes from the same bison. We also found that fecal-derived DNA samples often underestimated heterozygosity values, in some cases by over 20%. Conclusions These findings highlight a potential shortcoming inherent in previous wildlife studies that relied solely on a multi-tube approach, using exclusively low quality fecal DNA samples with no quality control to account for false alleles and allelic dropout. Herein, we present a rigorous marker selection protocol that is applicable for a wide range of species and report a set of 15 STR markers for use in future bison studies that yielded consistent results from both fecal and blood-derived DNA.
- Published
- 2019
- Full Text
- View/download PDF
7. Convergent antibody evolution and clonotype expansion following influenza virus vaccination.
- Author
-
David Forgacs, Rodrigo B Abreu, Giuseppe A Sautto, Greg A Kirchenbaum, Elliott Drabek, Kevin S Williamson, Dongkyoon Kim, Daniel E Emerling, and Ted M Ross
- Subjects
Medicine ,Science - Abstract
Recent advances in high-throughput single cell sequencing have opened up new avenues into the investigation of B cell receptor (BCR) repertoires. In this study, PBMCs were collected from 17 human participants vaccinated with the split-inactivated influenza virus vaccine during the 2016-2017 influenza season. A combination of Immune Repertoire Capture (IRCTM) technology and IgG sequencing was performed on ~7,800 plasmablast (PB) cells and preferential IgG heavy-light chain pairings were investigated. In some participants, a single expanded clonotype accounted for ~22% of their PB BCR repertoire. Approximately 60% (10/17) of participants experienced convergent evolution, possessing public PBs that were elicited independently in multiple participants. Binding profiles of one private and three public PBs confirmed they were all subtype-specific, cross-reactive hemagglutinin (HA) head-directed antibodies. Collectively, this high-resolution antibody repertoire analysis demonstrated the impact evolution can have on BCRs in response to influenza virus vaccination, which can guide future universal influenza prophylactic approaches.
- Published
- 2021
- Full Text
- View/download PDF
8. Development of SNP-Based Genomic Tools for the Canadian Bison Industry: Parentage Verification and Subspecies Composition
- Author
-
Tianfu Yang, Michelle Miller, David Forgacs, James Derr, and Paul Stothard
- Subjects
parentage verification ,subspecies composition ,bison ,genomic tools ,SNP genotyping ,Genetics ,QH426-470 - Abstract
Genomic technologies have been increasingly applied in livestock production due to their utility in production management and animal genetic improvement. The current project aimed to develop genomic resources for the Canadian bison industry, specifically a parentage verification tool and a subspecies composition tool. Both products stand to help with building and maintaining purebred and crossbred bison populations, and in turn bison conservation and production. The development of this genomic toolkit proceeded in two stages. In the single-nucleotide polymorphism (SNP) discovery and selection stage, raw sequence information from 41 bison samples was analyzed, and approximately 52.5 million candidate biallelic SNPs were discovered from 21 samples with high sequence quality. A set of 19,954 SNPs (2,928 for parentage verification and 17,026 for subspecies composition) were then selected for inclusion on an Axiom myDesign custom array. In the refinement and validation stage, 480 bison were genotyped using the custom SNP panel, and the resulting genotypes were analyzed to further filter SNPs and assess tool performance. In various tests using real and simulated genotypes, the two genomic tools showed excellent performance for their respective tasks. Final SNP sets consisting of 191 SNPs for parentage and 17,018 SNPs for subspecies composition are described. As the first SNP-based genomic toolkit designed for the Canadian bison industry, our results may provide a new opportunity in improving the competitiveness and profitability of the industry in a sustainable manner.
- Published
- 2020
- Full Text
- View/download PDF
9. The Effect of Waning on Antibody Levels and Memory B Cell Recall following SARS-CoV-2 Infection or Vaccination
- Author
-
David Forgacs, Vanessa Silva-Moraes, Giuseppe A. Sautto, Hannah B. Hanley, Jasper L. Gattiker, Alexandria M. Jefferson, Ravindra Kolhe, and Ted M. Ross
- Subjects
SARS-CoV-2 ,COVID-19 ,antibody decay ,waning ,vaccination ,infection ,Medicine - Abstract
In order to longitudinally track SARS-CoV-2 antibody levels after vaccination or infection, we assessed anti-RBD antibody levels in over 1000 people and found no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, a significant waning of antibody levels was observed following vaccination. Participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to higher antibody levels, which were maintained at higher levels than in previously infected, unvaccinated participants. Older participants exhibited lower level of antibodies after vaccination, but a higher level after infection than younger people. The rate of antibody waning was not affected by pre-immunity or age. Participants who received a third dose of an mRNA vaccine not only increased their antibody levels ~14-fold, but also had ~3 times more antibodies compared to when they received their primary vaccine series. PBMC-derived memory B cells from 13 participants who lost all circulating antibodies were differentiated into antibody secreting cells (ASCs). There was a significant recall of memory B cell ASCs in the absence of serum antibodies in 5–8 of the 10 vaccinated participants, but not in any of the 3 infected participants, suggesting a strong connection between antibody levels and the effectiveness of memory B cell recall.
- Published
- 2022
- Full Text
- View/download PDF
10. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.
- Author
-
David Forgacs, Rick L Wallen, Lauren K Dobson, and James N Derr
- Subjects
Medicine ,Science - Abstract
Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06). Spatial analysis of these mitochondrial DNA (mtDNA) haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76). However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites) from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison) and Canadian wood bison (B. b. athabascae). Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.