7 results on '"Domiziana Ortolani"'
Search Results
2. Effects of enriched-potassium diet on cardiorespiratory outcomes in experimental non-ischemic chronic heart failure
- Author
-
Karla G. Schwarz, Katherin V. Pereyra, Camilo Toledo, David C. Andrade, Hugo S. Díaz, Esteban Díaz-Jara, Domiziana Ortolani, Angélica Rios-Gallardo, Paulina Arias, Alexandra Las Heras, Ignacio Vera, Fernando C. Ortiz, Nibaldo C. Inestrosa, Carlos P. Vio, and Rodrigo Del Rio
- Subjects
Heart failure ,Potassium supplemented diet ,Autonomic imbalance ,Breathing disorders ,Chemoreflex function ,Biology (General) ,QH301-705.5 - Abstract
Abstract Background Chronic heart failure (CHF) is a global health problem. Increased sympathetic outflow, cardiac arrhythmogenesis and irregular breathing patterns have all been associated with poor outcomes in CHF. Several studies showed that activation of the renin-angiotensin system (RAS) play a key role in CHF pathophysiology. Interestingly, potassium (K+) supplemented diets showed promising results in normalizing RAS axis and autonomic dysfunction in vascular diseases, lowering cardiovascular risk. Whether subtle increases in dietary K+ consumption may exert similar effects in CHF has not been previously tested. Accordingly, we aimed to evaluate the effects of dietary K+ supplementation on cardiorespiratory alterations in rats with CHF. Methods Adult male Sprague–Dawley rats underwent volume overload to induce non-ischemic CHF. Animals were randomly allocated to normal chow diet (CHF group) or supplemented K+ diet (CHF+K+ group) for 6 weeks. Cardiac arrhythmogenesis, sympathetic outflow, baroreflex sensitivity, breathing disorders, chemoreflex function, respiratory–cardiovascular coupling and cardiac function were evaluated. Results Compared to normal chow diet, K+ supplemented diet in CHF significantly reduced arrhythmia incidence (67.8 ± 15.1 vs. 31.0 ± 3.7 events/hour, CHF vs. CHF+K+), decreased cardiac sympathetic tone (ΔHR to propranolol: − 97.4 ± 9.4 vs. − 60.8 ± 8.3 bpm, CHF vs. CHF+K+), restored baroreflex function and attenuated irregular breathing patterns. Additionally, supplementation of the diet with K+ restores normal central respiratory chemoreflex drive and abrogates pathological cardio-respiratory coupling in CHF rats being the outcome an improved cardiac function. Conclusion Our findings support that dietary K+ supplementation in non-ischemic CHF alleviate cardiorespiratory dysfunction.
- Published
- 2021
- Full Text
- View/download PDF
3. Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive
- Author
-
David C. Andrade, Esteban Díaz-Jara, Camilo Toledo, Karla G. Schwarz, Katherin V. Pereyra, Hugo S. Díaz, Noah J. Marcus, Fernando C. Ortiz, Angélica P. Ríos-Gallardo, Domiziana Ortolani, and Rodrigo Del Rio
- Subjects
Medicine ,Science - Abstract
Abstract Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
- Published
- 2021
- Full Text
- View/download PDF
4. Potential Role of the Retrotrapezoid Nucleus in Mediating Cardio-Respiratory Dysfunction in Heart Failure With Preserved Ejection Fraction
- Author
-
Camilo Toledo, Domiziana Ortolani, Fernando C. Ortiz, Noah J. Marcus, and Rodrigo Del Rio
- Subjects
heart failure ,chemoreflex control ,autonomic control ,breathing disorders ,chemoreceptors ,Physiology ,QP1-981 - Abstract
A strong association between chemoreflex hypersensitivity, disordered breathing, and elevated sympathetic activity has been shown in experimental and human heart failure (HF). The contribution of chemoreflex hypersensitivity in HF pathophysiology is incompletely understood. There is ample evidence that increased peripheral chemoreflex drive in HF with reduced ejection fraction (HFrEF; EF50%). Importantly, it has been shown that activation of the central chemoreflex worsens autonomic dysfunction in experimental HFpEF, an effect mediated in part by the activation of C1 catecholaminergic neurons neighboring the retrotrapezoid nucleus (RTN), an important region for central chemoreflex control of respiratory and autonomic function. Accordingly, the main purpose of this brief review is to discuss the possible role played by activation of central chemoreflex pathways on autonomic function and its potential role in precipitating disordered breathing in HFpEF. Improving understanding of the contribution of the central chemoreflex to the pathophysiology of HFpEF may help in development of novel interventions intended to improve cardio-respiratory outcomes in HFpEF.
- Published
- 2022
- Full Text
- View/download PDF
5. Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis
- Author
-
David Orduz, Najate Benamer, Domiziana Ortolani, Eva Coppola, Lisa Vigier, Alessandra Pierani, and María Cecilia Angulo
- Subjects
Science - Abstract
During cortical development the first wave of oligodendrocyte precursor cells (OPCs) completely disappear by programmed cell death, so that it is presumed that this OPC population does not play a role at postnatal stages. In this study, authors use lineage tracing in different transgenic mice to show that a subpopulation of OPCs from the first wave survives at postnatal stages and display a preferential synaptic connectivity with their ontogenetically-related interneurons compared to other OPCs or interneurons
- Published
- 2019
- Full Text
- View/download PDF
6. Lipid-Encapsuled Grape Tannins Prevent Oxidative-Stress-Induced Neuronal Cell Death, Intracellular ROS Accumulation and Inflammation
- Author
-
Hugo S. Díaz, Angélica Ríos-Gallardo, Domiziana Ortolani, Esteban Díaz-Jara, María José Flores, Ignacio Vera, Angela Monasterio, Fernando C. Ortiz, Natalia Brossard, Fernando Osorio, and Rodrigo Del Río
- Subjects
oxidative stress ,polyphenols ,liposomes ,neuroprotection ,natural products ,Therapeutics. Pharmacology ,RM1-950 - Abstract
The central nervous system (CNS) is particularly vulnerable to oxidative stress and inflammation, which affect neuronal function and survival. Nowadays, there is great interest in the development of antioxidant and anti-inflammatory compounds extracted from natural products, as potential strategies to reduce the oxidative/inflammatory environment within the CNS and then preserve neuronal integrity and brain function. However, an important limitation of natural antioxidant formulations (mainly polyphenols) is their reduced in vivo bioavailability. The biological compatible delivery system containing polyphenols may serve as a novel compound for these antioxidant formulations. Accordingly, in the present study, we used liposomes as carriers for grape tannins, and we tested their ability to prevent neuronal oxidative stress and inflammation. Cultured catecholaminergic neurons (CAD) were used to establish the potential of lipid-encapsulated grape tannins (TLS) to prevent neuronal oxidative stress and inflammation following an oxidative insult. TLS rescued cell survival after H2O2 treatment (59.4 ± 8.8% vs. 90.4 ± 5.6% H2O2 vs. TLS+ H2O2; p < 0.05) and reduced intracellular ROS levels by ~38% (p < 0.05), despite displaying negligible antioxidant activity in solution. Additionally, TLS treatment dramatically reduced proinflammatory cytokines’ mRNA expression after H2O2 treatment (TNF-α: 400.3 ± 1.7 vs. 7.9 ± 1.9-fold; IL-1β: 423.4 ± 1.3 vs. 12.7 ± 2.6-fold; p < 0.05; H2O2 vs. TLS+ H2O2, respectively), without affecting pro/antioxidant biomarker expression, suggesting that liposomes efficiently delivered tannins inside neurons and promoted cell survival. In conclusion, we propose that lipid-encapsulated grape tannins could be an efficient tool to promote antioxidant/inflammatory cell defense.
- Published
- 2022
- Full Text
- View/download PDF
7. In vivo Optogenetic Approach to Study Neuron-Oligodendroglia Interactions in Mouse Pups
- Author
-
Domiziana Ortolani, Blandine Manot-Saillet, David Orduz, Fernando C. Ortiz, and Maria Cecilia Angulo
- Subjects
optogenetics ,GABAergic interneuron ,oligodendrocyte precursor cell ,developing brain ,somatosensory cortex ,proliferation ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 - Abstract
Optogenetic and pharmacogenetic techniques have been effective to analyze the role of neuronal activity in controlling oligodendroglia lineage cells in behaving juvenile and adult mice. This kind of studies is also of high interest during early postnatal (PN) development since important changes in oligodendroglia dynamics occur during the first two PN weeks. Yet, neuronal manipulation is difficult to implement at an early age because high-level, specific protein expression is less reliable in neonatal mice. Here, we describe a protocol allowing for an optogenetic stimulation of neurons in awake mouse pups with the purpose of investigating the effect of neuronal activity on oligodendroglia dynamics during early PN stages. Since GABAergic interneurons contact oligodendrocyte precursor cells (OPCs) through bona fide synapses and maintain a close relationship with these progenitors during cortical development, we used this relevant example of neuron-oligodendroglia interaction to implement a proof-of-principle optogenetic approach. First, we tested Nkx2.1-Cre and Parvalbumin (PV)-Cre lines to drive the expression of the photosensitive ion channel channelrhodopsin-2 (ChR2) in subpopulations of interneurons at different developmental stages. By using patch-clamp recordings and photostimulation of ChR2-positive interneurons in acute somatosensory cortical slices, we analyzed the level of functional expression of ChR2 in these neurons. We found that ChR2 expression was insufficient in PV-Cre mouse at PN day 10 (PN10) and that this channel needs to be expressed from embryonic stages (as in the Nkx2.1-Cre line) to allow for a reliable photoactivation in mouse pups. Then, we implemented a stereotaxic surgery to place a mini-optic fiber at the cortical surface in order to photostimulate ChR2-positive interneurons at PN10. In vivo field potentials were recorded in Layer V to verify that photostimulation reaches deep cortical layers. Finally, we analyzed the effect of the photostimulation on the layer V oligodendroglia population by conventional immunostainings. Neither the total density nor a proliferative fraction of OPCs were affected by increasing interneuron activity in vivo, complementing previous findings showing the lack of effect of GABAergic synaptic activity on OPC proliferation. The methodology described here should provide a framework for future investigation of the role of early cellular interactions during PN brain maturation.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.