1. Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa
- Author
-
Marisa Klopper, Robin Mark Warren, Cindy Hayes, Nicolaas Claudius Gey van Pittius, Elizabeth Maria Streicher, Borna Müller, Frederick Adriaan Sirgel, Mamisa Chabula-Nxiweni, Ebrahim Hoosain, Gerrit Coetzee, Paul David van Helden, Thomas Calldo Victor, and André Phillip Trollip
- Subjects
Tuberculosis ,multidrug-resistant tuberculosis ,MDR-TB ,extensively drug-resistant tuberculosis ,XDR-TB ,totally drug-resistant tuberculosis ,Medicine ,Infectious and parasitic diseases ,RC109-216 - Abstract
Factors driving the increase in drug-resistant tuberculosis (TB) in the Eastern Cape Province, South Africa, are not understood. A convenience sample of 309 drug-susceptible and 342 multidrug-resistant (MDR) TB isolates, collected July 2008–July 2009, were characterized by spoligotyping, DNA fingerprinting, insertion site mapping, and targeted DNA sequencing. Analysis of molecular-based data showed diverse genetic backgrounds among drug-sensitive and MDR TB sensu stricto isolates in contrast to restricted genetic backgrounds among pre–extensively drug-resistant (pre-XDR) TB and XDR TB isolates. Second-line drug resistance was significantly associated with the atypical Beijing genotype. DNA fingerprinting and sequencing demonstrated that the pre-XDR and XDR atypical Beijing isolates evolved from a common progenitor; 85% and 92%, respectively, were clustered, indicating transmission. Ninety-three percent of atypical XDR Beijing isolates had mutations that confer resistance to 10 anti-TB drugs, and some isolates also were resistant to para-aminosalicylic acid. These findings suggest the emergence of totally drug-resistant TB.
- Published
- 2013
- Full Text
- View/download PDF