1. Hopping of the Center-of-Mass of Single G Centers in Silicon-on-Insulator
- Author
-
Alrik Durand, Yoann Baron, Péter Udvarhelyi, Félix Cache, Krithika V. R., Tobias Herzig, Mario Khoury, Sébastien Pezzagna, Jan Meijer, Jean-Michel Hartmann, Shay Reboh, Marco Abbarchi, Isabelle Robert-Philip, Adam Gali, Jean-Michel Gérard, Vincent Jacques, Guillaume Cassabois, and Anaïs Dréau
- Subjects
Physics ,QC1-999 - Abstract
Among the wealth of single fluorescent defects recently detected in silicon, the G center catches interest for its telecom single-photon emission that could be coupled to a metastable electron spin triplet. The G center is a unique defect where the standard Born-Oppenheimer approximation used in solid-state physics breaks down as one of its atoms, a silicon atom in interstitial position Si_{(i)}, can move between six sites. The impact of its displacement, due either to coherent tunneling or to random jumps from one site to another, on the optical properties of G centers is still largely unknown, especially in silicon-on-insulator (SOI) samples. Here, we investigate the displacement of the center of mass of the G center in silicon. By performing photoluminescence experiments at single-defect scale, we show that individual G defects in SOI exhibit several emission dipoles and zero-phonon line fine structures with splittings up to approximately 1 meV, both indicating a motion of the defect central atom over time. Combining polarization and spectral analysis at the single-photon level, we evidence that the reconfiguration dynamics is drastically different from the one of the unperturbed G center in bulk silicon where the mobile atom is fully delocalized over all six sites through tunneling. The SOI structure freezes the Si_{(i)} delocalization of the G defect and, as a result, enables one to isolate linearly polarized optical lines. Under above-band-gap optical excitation, the central atom of G centers in SOI behaves as if it were in a six-slot roulette wheel, randomly alternating between localized crystal sites at each optical cycle. Comparative measurements in a bulk silicon sample and ab initio calculations highlight that strain is likely the dominant perturbation impacting the G center geometry. These results shed light on the importance of the atomic reconfiguration dynamics to understand and control the photoluminescence properties of the G center in silicon. More generally, these findings emphasize the impact of strain fluctuations inherent to SOI wafers for future quantum integrated photonics applications based on color centers in silicon.
- Published
- 2024
- Full Text
- View/download PDF