4 results on '"Kroon, L. P. N. M."'
Search Results
2. Genetic structure and pathogenicity of populations of Phytophthora infestans from organic potato crops in France, Norway, Switzerland and the United Kingdom.
- Author
-
Flier, W. G., Kroon, L. P. N. M., Hermansen, A., van Raaij, H. M. G., Speiser, B., Tamm, L., Fuchs, J. G., Lambion, J., Razzaghian, J., Andrivon, D., Wilcockson, S., and Leifert, C.
- Subjects
- *
PHYTOPHTHORA infestans , *LATE blight of potato , *PHYTOPHTHORA diseases , *POTATO diseases & pests - Abstract
Genetic variation and pathogenicity of Phytophthora infestans isolates collected from organic potato crops of the susceptible cv. Bintje and the moderately resistant cv. Santé were assessed in France, Norway, and the United Kingdom in 2001 and in Switzerland in 2001 and 2002. Population structures differed considerably between the four P. infestans populations. Those from France, Switzerland and the UK were mainly clonal populations showing restricted levels of genetic diversity, whilst those from Norway were mixed A1 and A2 mating type populations with high levels of genetic diversity, suggesting periodical sexual reproduction. Isolates collected from cv. Bintje were on average more aggressive than or comparable to isolates from cv. Santé. Race complexity varied considerably between the regional P. infestans populations, with isolates from France and Switzerland showing the highest number of virulence factors. In all pathogen samples but the French, isolates collected from cv. Santé were more complex than isolates collected from cv. Bintje. No directional selection towards increased aggressiveness towards the more resistant cultivar Santé was observed. This suggests that there is no shift towards increased levels of pathogenicity in P. infestans populations following the large-scale introduction of more resistant potato varieties in organic production systems in Europe. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
3. Genetic Diversity of Phytophthora infestans sensu lato in Ecuador Provides New Insight Into the Origin of This Important Plant Pathogen.
- Author
-
Adler, N. E., Erselius, L. J., Chacon, M. G., Flier, W. G., Ordonez, M. E., Kroon, L. P. N. M., and Forbes, G. A.
- Subjects
- *
PHYTOPHTHORA , *PATHOGENIC microorganisms , *GENOTYPE-environment interaction , *PLANT physiology , *PLANT diseases , *GENETICS - Abstract
The metapopulation structure of Phytophthora infestans sensu lato is genetically diverse in the highlands of Ecuador. Previous reports documented the diversity associated with four putative clonal lineages of the pathogen collected from various hosts in the genus Solanum. This paper simultaneously analyzes diversity of the complete collection of isolates, including a large number that had not yet been reported. This analysis confirmed the existence of three pathogen populations, which all appear to be clonal lineages, and that correspond to those previously reported as US-l, EC-1, and EC-3. No evidence was found from the analyses of recently collected isolates that would contradict earlier reports about these three lineages. In contrast, new data from a group of isolates from several similar hosts caused us to modify the previous description of clonal lineage EC-2 and its previously proposed hosts, S. brevifolium and S. tetrapetalum. Given the uncertainty associated with the identification of these hosts, which all belong to the section Anarrhichomenum, we refer to them as the Anarrhichomenum complex, pending further taxonomic clarification. New pathogen genotypes associated with the Anarrhichomenum complex were isolated recently that are A1 mating type and Ia mitochondrial DNA (mtDNA) haplotype, and therefore differ from the previously described EC-2 lineage, which is A2 and Ic, respectively. Because of uncertainty on host identification, we do not know if the new genotypes are limited to one host species and therefore represent yet another host-adapted clonal lineage. For now, we refer to the new genotypes and previously described EC-2 genotypes, together, as the pathogen group attacking the Anarrhichomenum complex. Two A2 isolates identical to the previously described EC-2 archetype were collected from severely infected plants of pear melon (S. muricatum). Pear melon is generally attacked by US-1, and this is the first clear case we have documented in which two distinct pathogen genotypes have caused severe epidemics on the same host. Based on presence of unique marker alleles (restriction fragment length polymorphism [RFLP] and mtDNA) and genetic similarity analysis using RFLP and amplified fragment length polymorphism data, EC-3 and isolates from the Anarrhichomenum complex are genetically distinct from all genotypes of P. infestans that have been reported previously. No current theory of historical migrations for this pathogen can adequately support a Mexican origin for EC-3 and genotypes of the Anarrhichomenum complex and they may, therefore, be palaeoendemic to the Andean highlands. To date, we have identified 15 hosts in the genus Solanum, in addition to the Anarrhichomenum complex, and some unidentified species of P. infestans sensu lato in Ecuador. Five of the Solanum hosts are cultivated. One isolate was collected from Brugmansia sanguinea, which represents the first report from Ecuador of a host of this pathogen that is not in the genus Solanum. However, P. infestans sensu lato was only found on flower petals of B. sanguinea. This study provides new insights into the population structure of highly specialized genotypes of P. infestans sensu lato in the Andean highlands. The results are discussed in light of previous hypotheses regarding the geographic origin of the pathogen. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
4. Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences.
- Author
-
Kroon LP, Bakker FT, van den Bosch GB, Bonants PJ, and Flier WG
- Subjects
- Biological Evolution, Electron Transport Complex IV classification, Electron Transport Complex IV genetics, Molecular Sequence Data, NADH Dehydrogenase classification, NADH Dehydrogenase genetics, Open Reading Frames genetics, Peptide Elongation Factor 1 classification, Peptide Elongation Factor 1 genetics, Phytophthora genetics, Sequence Analysis, DNA, Tubulin classification, Tubulin genetics, Cell Nucleus genetics, DNA classification, DNA, Mitochondrial classification, Phylogeny, Phytophthora classification
- Abstract
A molecular phylogenetic analysis of the genus Phytophthora was performed, 113 isolates from 48 Phytophthora species were included in this analysis. Phylogenetic analyses were performed on regions of mitochondrial (cytochrome c oxidase subunit 1; NADH dehydrogenase subunit 1) and nuclear gene sequences (translation elongation factor 1alpha; beta-tubulin) and comparisons made to test for incongruence between the mitochondrial and nuclear data sets. The genus Phytophthora was confirmed to be monophyletic. In addition, results confirm that the classical taxonomic grouping as described by [Waterhouse (1963)] does not reflect true phylogenetic relations. Phytophthora species were redistributed into 8 clades, providing a more accurate representation of phylogenetic relationships within the genus Phytophthora. The evolution and transition of morphological, pathogenic, and reproductive traits was inferred from the cladogram generated in this study. Mating system was inferred to be a homoplasious trait, with at least eight independent transitions from homothallism to heterothallism observed.
- Published
- 2004
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.