124 results on '"Legeai, F"'
Search Results
2. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements
- Author
-
d'Alençon, E., Sezutsu, H., Legeai, F., Permal, E., Bernard-Samain, S., Gimenez, S., Gagneur, C., Cousserans, F., Shimomura, M., Brun-Barale, A., Flutre, T., Couloux, A., East, P., Gordon, K., Mita, K., Quesneville, H., Fournier, P., Feyereisen, R., and Berenbaum, May R.
- Published
- 2010
3. Study of simple sequence repeat (SSR) markers from wheat expressed sequence tags (ESTs)
- Author
-
Nicot, N., Chiquet, V., Gandon, B., Amilhat, L., Legeai, F., Leroy, P., Bernard, M., and Sourdille, P.
- Published
- 2004
- Full Text
- View/download PDF
4. Annotated expressed sequence tags for studies of the regulation of reproductive modes in aphids
- Author
-
Tagu, D, Prunier-Leterme, N, Legeai, F, Gauthier, J.-P, Duclert, A, Sabater-Muñoz, B, Bonhomme, J, and Simon, J.-C
- Published
- 2004
- Full Text
- View/download PDF
5. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid
- Author
-
Gauthier J-P, Haubruge E, De Pauw E, Bonhomme J, Jaubert-Possamai S, Francis F, Le Trionnaire G, Legeai F, Prunier-Leterme N, Simon J-C, Tanguy S, and Tagu D
- Subjects
Biotechnology ,TP248.13-248.65 ,Genetics ,QH426-470 - Abstract
Abstract Background Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids.
- Published
- 2009
- Full Text
- View/download PDF
6. Masculinization of the X-chromosome in aphid soma and gonads
- Author
-
Jaquiéry, Julie, Simon, Jean-Christophe, Robin, Stéphanie, Richard, Gautier, Peccoud, Jean, Boulain, Hélène, Legeai, Fabrice, Tanguy, Sylvie, Prunier-Leterme, Nathalie, and Letrionnaire, Gaël
- Subjects
Archaeology ,CC1-960 ,Science - Abstract
Males and females share essentially the same genome but differ in their optimal values for many phenotypic traits, which can result in intra-locus conflict between the sexes. Aphids display XX/X0 sex chromosomes and combine unusual X chromosome inheritance with cyclical parthenogenesis. Theoretical and empirical works support the hypothesis that the large excess of male-biased genes observed on the aphid X chromosome compared to autosomes evolved in response to sexual conflicts, by restricting the products of sexually antagonistic alleles to the sex they benefits. However, whether such masculinization of the X affects all tissues (as expected if it evolved in response to sexual conflicts) or is limited to specific tissues remains an open question. Here, we measured gene expression in three different somatic and gonadic tissues of males, sexual females and parthenogenetic females of the pea aphid. We observed a masculinization of the X in each of the studied tissues, with male-biased genes being 2.5 to 3.5 more frequent on the X than expected. We also tested the hypothesis that gene duplication can facilitate the attenuation of conflicts by allowing gene copies to neo- or sub-functionalize and reach sex-specific optima. As predicted, X-linked copies of duplicated genes having their other copies on autosomes were more frequently male-biased (40.5% of the genes) than duplicated autosomal genes (6.6%) or X-linked single-copy genes (32.5%). These results highlight a peculiar pattern of expression of X-linked genes in aphids at the tissue level and provide further support for sex-biased expression as a mechanism to attenuate intra-locus sexual conflicts.
- Published
- 2022
- Full Text
- View/download PDF
7. Genome scans on experimentally evolved populations reveal candidate regions for adaptation to plant resistance in the potato cyst nematode Globodera pallida.
- Author
-
Eoche‐Bosy, D., Gautier, M., Esquibet, M., Legeai, F., Bretaudeau, A., Bouchez, O., Fournet, S., Grenier, E., and Montarry, J.
- Subjects
PLANT resistance to insects ,BIOLOGICAL adaptation ,GOLDEN nematode ,GLOBODERA pallida ,METAGENOMICS ,VIRULENCE of nematodes ,NUCLEOTIDE sequencing ,POPULATION genetics - Abstract
Improving resistance durability involves to be able to predict the adaptation speed of pathogen populations. Identifying the genetic bases of pathogen adaptation to plant resistances is a useful step to better understand and anticipate this phenomenon. Globodera pallida is a major pest of potato crop for which a resistance QTL, GpaV
vrn , has been identified in Solanum vernei. However, its durability is threatened as G. pallida populations are able to adapt to the resistance in few generations. The aim of this study was to investigate the genomic regions involved in the resistance breakdown by coupling experimental evolution and high-density genome scan. We performed a whole-genome resequencing of pools of individuals (Pool-Seq) belonging to G. pallida lineages derived from two independent populations having experimentally evolved on susceptible and resistant potato cultivars. About 1.6 million SNPs were used to perform the genome scan using a recent model testing for adaptive differentiation and association to population-specific covariables. We identified 275 outliers and 31 of them, which also showed a significant reduction in diversity in adapted lineages, were investigated for their genic environment. Some candidate genomic regions contained genes putatively encoding effectors and were enriched in SPRYSECs, known in cyst nematodes to be involved in pathogenicity and in (a)virulence. Validated candidate SNPs will provide a useful molecular tool to follow frequencies of virulence alleles in natural G. pallida populations and define efficient strategies of use of potato resistances maximizing their durability. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
8. Whole-genome re-sequencing of non-model organisms: lessons from unmapped reads.
- Author
-
Gouin, A, Legeai, F, Nouhaud, P, Whibley, A, Simon, J-C, and Lemaitre, C
- Subjects
- *
GENOMICS , *PEA aphid , *MOLECULAR genetics , *HOST plants , *ACYRTHOSIPHON - Abstract
Unmapped reads are often discarded from the analysis of whole-genome re-sequencing, but new biological information and insights can be uncovered through their analysis. In this paper, we investigate unmapped reads from the re-sequencing data of 33 pea aphid genomes from individuals specialized on different host plants. The unmapped reads for each individual were retrieved following mapping to the Acyrthosiphon pisum reference genome and its mitochondrial and symbiont genomes. These sets of unmapped reads were then cross-compared, revealing that a significant number of these unmapped sequences were conserved across individuals. Interestingly, sequences were most commonly shared between individuals adapted to the same host plant, suggesting that these sequences may contribute to the divergence between host plant specialized biotypes. Analysis of the contigs obtained from assembling the unmapped reads pooled by biotype allowed us to recover some divergent genomic regions previously excluded from analysis and to discover putative novel sequences of A. pisum and its symbionts. In conclusion, this study emphasizes the interest of the unmapped component of re-sequencing data sets and the potential loss of important information. We here propose strategies to aid the capture and interpretation of this information. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
9. Genome scans reveal candidate regions involved in the adaptation to host plant in the pea aphid complex.
- Author
-
Jaquiéry, J., Stoeckel, S., Nouhaud, P., Mieuzet, L., Mahéo, F., Legeai, F., Bernard, N., Bonvoisin, A., Vitalis, R., and Simon, J-C.
- Subjects
PEA aphid ,HOST plants ,BIOLOGICAL evolution ,PLANT adaptation ,POPULATION differentiation - Abstract
A major goal in evolutionary biology is to uncover the genetic basis of adaptation. Divergent selection exerted on ecological traits may result in adaptive population differentiation and reproductive isolation and affect differentially the level of genetic divergence along the genome. Genome-wide scan of large sets of individuals from multiple populations is a powerful approach to identify loci or genomic regions under ecologically divergent selection. Here, we focused on the pea aphid, a species complex of divergent host races, to explore the organization of the genomic divergence associated with host plant adaptation and ecological speciation. We analysed 390 microsatellite markers located at variable distances from predicted genes in replicate samples of sympatric populations of the pea aphid collected on alfalfa, red clover and pea, which correspond to three common host-adapted races reported in this species complex. Using a method that accounts for the hierarchical structure of our data set, we found a set of 11 outlier loci that show higher genetic differentiation between host races than expected under the null hypothesis of neutral evolution. Two of the outliers are close to olfactory receptor genes and three other nearby genes encoding salivary proteins. The remaining outliers are located in regions with genes of unknown functions, or which functions are unlikely to be involved in interactions with the host plant. This study reveals genetic signatures of divergent selection across the genome and provides an inventory of candidate genes responsible for plant specialization in the pea aphid, thereby setting the stage for future functional studies. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
10. Comparison of Gene Repertoires and Patterns of Evolutionary Rates in Eight Aphid Species That Differ by Reproductive Mode.
- Author
-
Ollivier, M., Gabaldón, T., Poulain, J., Gavory, F., Leterme, N., Gauthier, J.-P., Legeai, F., Tagu, D., Simon, J. C., and Rispe, C.
- Subjects
APHIDS ,GENETIC mutation ,REPRODUCTION ,GENE expression ,BIOLOGICAL evolution ,GENETICS - Abstract
In theory, the loss of sexual reproduction is expected to result in the accumulation of deleterious mutations. In aphids, two main types of life cycle, cyclic and obligate parthenogenesis, represent respectively “sexual” and “asexual” reproductive modes. We used the complete pea aphid genome and previously published expressed sequence tags (ESTs) from two other aphid species. In addition, we obtained 100,000 new ESTs from five more species. The final set comprised four sexual and four asexual aphid species and served to test the influence of the reproductive mode on the evolutionary rates of genes. We reconstructed coding sequences from ESTs and annotated these genes, discovering a novel peptide gene family that appears to be among the most highly expressed transcripts from several aphid species. From 203 genes found to be 1:1 orthologs among the eight species considered, we established a species tree that partly conflicted with taxonomy (for Myzus ascalonicus). We then used this topology to evaluate the dynamics of evolutionary rates and mutation accumulation in the four sexual and four asexual taxa. No significant increase of the nonsynonymous to synonymous ratio or of nonsynonymous mutation numbers was found in any of the four branches for asexual taxa. We however found a significant increase of the synonymous rate in the branch leading to the asexual species Rhopalosiphum maidis, which could be due to a change in the mutation rate or to an increased number of generations implied by its change of life cycle. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
11. Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements.
- Author
-
d'AIençona, E., Sezutsu, H., Legeai, F., Permale, E., Bernard-Samain, S., Gimenez, S., Gagneur, C., Cousserans°, F., Shimomura, M., Brun-BaraIe, A., Flutre, T., CouIoux, A., East, P., Gordon, K., Mita, K., Quesneville, H., Fournier, P., and Feyereisen, R.
- Subjects
BOMBYCIDAE ,SILKWORMS ,CHROMOSOMES ,GENOMES ,NOCTUIDAE ,HELICOVERPA armigera ,FALL armyworm ,BEHAVIOR ,PHYSIOLOGY - Abstract
The recent assembly of the silkworm Bombyx mon genome with 432 Mb on 28 holocentric chromosomes has become a reference in the genomic analysis of the very diverse Order of Lepidoptera. We sequenced BAC5 from two major pests, the noctuid moths Helicoverpa armigera and Spodoptera frugiperda. corresponding to 15 regions distributed on 11 B. mon chromosomes, each BAC/region being anchored by known orthologous gene(s) to analyze syntenic relationships and genome rearrangements among the three species. Nearly 300 genes and numerous transposable elements were identified, with long interspersed nuclear elements and terminal inverted repeats the most abundant transposable element classes. There was a high degree of synteny conservation between B. mon and the two noctuid species. Conserved syntenic blocks of identified genes were very small, however, approximately 1.3 genes per block between B. mon and the two noctuid species and 2.0 genes per block between S. frugiperda and H. armigera. This corresponds to approximately two chromosome breaks per Mb DNA per My. This is a much higher evolution rate than among species of the Drosophila genus and may be related to the holocentric nature of the lepidopteran genomes. We report a large cluster of eight members of the aminopeptidase N gene family that we estimate to have been present since the Jurassic. In contrast, several clusters of cytochrome P450 genes showed multiple lineage-specific duplication events, in particular in the lepidopteran CYP9A subfamily. Our study highlights the value of the silkworm genome as a reference in lepidopteran comparative genomics. [ABSTRACT FROM AUTHOR]
- Published
- 2010
12. AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome.
- Author
-
Legeai, F., Shigenobu, S., Gauthier, J.-P., Colbourne, J., Rispe, C., Collin, O., Richards, S., Wilson, A. C. C., Murphy, T., and Tagu, D.
- Subjects
- *
PEA aphid , *INFORMATION resources , *GENOMES , *SEARCH engines , *GENOMICS - Abstract
AphidBase is a centralized bioinformatic resource that was developed to facilitate community annotation of the pea aphid genome by the International Aphid Genomics Consortium (IAGC). The AphidBase Information System designed to organize and distribute genomic data and annotations for a large international community was constructed using open source software tools from the Generic Model Organism Database (GMOD). The system includes Apollo and GBrowse utilities as well as a wiki, blast search capabilities and a full text search engine. AphidBase strongly supported community cooperation and coordination in the curation of gene models during community annotation of the pea aphid genome. AphidBase can be accessed at . [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
13. Comparative analysis of the Acyrthosiphon pisum genome and expressed sequence tag-based gene sets from other aphid species.
- Author
-
Ollivier, M., Legeai, F., and Rispe, C.
- Subjects
- *
PEA aphid , *GENOMES , *GENES , *PHYLOGENY , *APHIDS , *MACROSIPHUM - Abstract
To study gene repertoires and their evolution within aphids, we compared the complete genome sequence of Acyrthosiphon pisum (reference gene set) and expressed sequence tag (EST) data from three other species: Myzus persicae, Aphis gossypii and Toxoptera citricida. We assembled ESTs, predicted coding sequences, and identified potential pairs of orthologues (reciprocical best hits) with A. pisum. Pairwise comparisons show that a fraction of the genes evolve fast (high ratio of non-synonymous to synonymous rates), including many genes shared by aphids but with no hit in Uniprot. A detailed phylogenetic study for four fast-evolving genes ( C002, JHAMT, Apo and GH) shows that rate accelerations are often associated with duplication events. We also compare compositional patterns between the two tribes of aphids, Aphidini and Macrosiphini. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
14. Transcriptomic and proteomic analyses of seasonal photoperiodism in the pea aphid.
- Author
-
Le Trionnaire, G., Francis, F., Jaubert-Possamai, S., Bonhomme, J., De Pauw, E., Gauthier, J.-P., Haubruge, E., Legeai, F., Prunier-Leterme, N., Simon, J.-C., Tanguy, S., and Tagu, D.
- Subjects
APHIDS ,PLANT genetics ,PHOTOPERIODISM ,CHRONOBIOLOGY ,CELL cycle - Abstract
Background: Aphid adaptation to harsh winter conditions is illustrated by an alternation of their reproductive mode. Aphids detect photoperiod shortening by sensing the length of the night and switch from viviparous parthenogenesis in spring and summer, to oviparous sexual reproduction in autumn. The photoperiodic signal is transduced from the head to the reproductive tract to change the fate of the future oocytes from mitotic diploid embryogenesis to haploid formation of gametes. This process takes place in three consecutive generations due to viviparous parthenogenesis. To understand the molecular basis of the switch in the reproductive mode, transcriptomic and proteomic approaches were used to detect significantly regulated transcripts and polypeptides in the heads of the pea aphid Acyrthosiphon pisum. Results: The transcriptomic profiles of the heads of the first generation were slightly affected by photoperiod shortening. This suggests that trans-generation signalling between the grand-mothers and the viviparous embryos they contain is not essential. By analogy, many of the genes and some of the proteins regulated in the heads of the second generation are implicated in visual functions, photoreception and cuticle structure. The modification of the cuticle could be accompanied by a down-regulation of the N-β-alanyldopamine pathway and desclerotization. In Drosophila, modification of the insulin pathway could cause a decrease of juvenile hormones in short-day reared aphids. Conclusion: This work led to the construction of hypotheses for photoperiodic regulation of the switch of the reproductive mode in aphids. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
15. Generic and queryable data integration schema for transcriptomics and epigenomics studies.
- Author
-
Tirlet Y, Boudet M, Becker E, Legeai F, and Dameron O
- Abstract
The expansion of multi-omics datasets raises significant challenges for data integration and querying. To overcome these challenges, we developed a generic RDF-based integration schema that connects various types of differential -omics data, epigenomics, and regulatory information. This schema employs the FALDO ontology to enable querying based on genomic locations. It is designed to be fully or partially populated, providing both flexibility and extensibility while supporting complex queries. We validated the schema by reproducing two recently published studies, one in biomedicine and the other in environmental science, proving its genericity and its ability to integrate data efficiently. This schema serves as an effective tool for managing and querying a wide range of multi-omics datasets., Competing Interests: The authors have no conflict of interest to disclose regarding this study., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
16. Transposable element accumulation drives genome size increase in Hylesia metabus (Lepidoptera: Saturniidae), an urticating moth species from South America.
- Author
-
Perrier C, Allio R, Legeai F, Gautier M, Bénéluz F, Marande W, Theron A, Rodde N, Herrera M, Saune L, Parrinello H, Mcclure M, and Arias M
- Abstract
We present the first nuclear genome assembly and a complete mitogenome for Hylesia metabus (Arthropoda; Insecta; Lepidoptera; Saturniidae). The assembled nuclear genome sequence is 1,271 Mb long, which is among the 10 largest lepidopteran genome assemblies published to date. It is scaffolded in 31 pseudo chromosomes, has a BUSCO score of 99.5%, and has a highly conserved synteny compared to phylogenetically close species. Repetitive elements make up 67% of the nuclear genome and are mainly located in intergenic regions, among which LINEs were predominant, with CR1-Zenon being the most abundant. Phylogenetic and comparative analyses of H. metabus assembly and 17 additional Saturniidae and Sphingidae assemblies suggested that an accumulation of repetitive elements likely led to the increased size of H. metabus' genome. Gene annotation using Helixer identified 26,122 transcripts. The Z scaffold was identified using both a synteny analysis and variations of coverage for two resequenced male and female H. metabus. The H. metabus nuclear genome and mitogenome assemblies can be found and browsed on the BIPAA website and constitute useful resources for future population and comparative genomics studies., (© The American Genetic Association. 2024.)
- Published
- 2024
- Full Text
- View/download PDF
17. Multiple deletions of candidate effector genes lead to the breakdown of partial grapevine resistance to downy mildew.
- Author
-
Paineau M, Minio A, Mestre P, Fabre F, Mazet ID, Couture C, Legeai F, Dumartinet T, Cantu D, and Delmotte F
- Subjects
- Oomycetes pathogenicity, Genome-Wide Association Study, Sequence Deletion, Genes, Plant, Haplotypes genetics, Gene Deletion, Phenotype, Vitis genetics, Vitis microbiology, Plant Diseases microbiology, Plant Diseases genetics, Plant Diseases immunology, Disease Resistance genetics
- Abstract
Grapevine downy mildew, caused by the oomycete Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni), is a global threat to Eurasian wine grapes Vitis vinifera. Although resistant grapevine varieties are becoming more accessible, P. viticola populations are rapidly evolving to overcome these resistances. We aimed to uncover avirulence genes related to Rpv3.1-mediated grapevine resistance. We sequenced the genomes and characterized the development of 136 P. viticola strains on resistant and sensitive grapevine cultivars. A genome-wide association study was conducted to identify genomic variations associated with resistant-breaking phenotypes. We identified a genomic region associated with the breakdown of Rpv3.1 grapevine resistance (avrRpv3.1 locus). A diploid-aware reassembly of the P. viticola INRA-Pv221 genome revealed structural variations in this locus, including a 30 kbp deletion. Virulent P. viticola strains displayed multiple deletions on both haplotypes at the avrRpv3.1 locus. These deletions involve two paralog genes coding for proteins with 800-900 amino acids and signal peptides. These proteins exhibited a structure featuring LWY-fold structural modules, common among oomycete effectors. When transiently expressed, these proteins induced cell death in grapevines carrying Rpv3.1 resistance, confirming their avirulence nature. This discovery sheds light on the genetic mechanisms enabling P. viticola to adapt to grapevine resistance, laying a foundation for developing strategies to manage this destructive crop pathogen., (© 2024 The Authors. New Phytologist © 2024 New Phytologist Foundation.)
- Published
- 2024
- Full Text
- View/download PDF
18. Identification of a viral gene essential for the genome replication of a domesticated endogenous virus in ichneumonid parasitoid wasps.
- Author
-
Lorenzi A, Legeai F, Jouan V, Girard PA, Strand MR, Ravallec M, Eychenne M, Bretaudeau A, Robin S, Rochefort J, Villegas M, Burke GR, Rebollo R, Nègre N, and Volkoff AN
- Subjects
- Animals, Genome, Viral, Female, Genes, Viral, Viral Proteins genetics, Viral Proteins metabolism, Polydnaviridae genetics, Virion genetics, Wasps virology, Wasps genetics, Virus Replication genetics
- Abstract
Thousands of endoparasitoid wasp species in the families Braconidae and Ichneumonidae harbor "domesticated endogenous viruses" (DEVs) in their genomes. This study focuses on ichneumonid DEVs, named ichnoviruses (IVs). Large quantities of DNA-containing IV virions are produced in ovary calyx cells during the pupal and adult stages of female wasps. Females parasitize host insects by injecting eggs and virions into the body cavity. After injection, virions rapidly infect host cells which is followed by expression of IV genes that promote the successful development of wasp offspring. IV genomes consist of two components: proviral segment loci that serve as templates for circular dsDNAs that are packaged into capsids, and genes from an ancestral virus that produce virions. In this study, we generated a chromosome-scale genome assembly for Hyposoter didymator that harbors H. didymator ichnovirus (HdIV). We identified a total of 67 HdIV loci that are amplified in calyx cells during the wasp pupal stage. We then focused on an HdIV gene, U16, which is transcribed in calyx cells during the initial stages of replication. Sequence analysis indicated that U16 contains a conserved domain in primases from select other viruses. Knockdown of U16 by RNA interference inhibited virion morphogenesis in calyx cells. Genome-wide analysis indicated U16 knockdown also inhibited amplification of HdIV loci in calyx cells. Altogether, our results identified several previously unknown HdIV loci, demonstrated that all HdIV loci are amplified in calyx cells during the pupal stage, and showed that U16 is required for amplification and virion morphogenesis., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Lorenzi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF
19. Chromosome-Level Assembly and Annotation of the Pearly Heath Coenonympha arcania Butterfly Genome.
- Author
-
Legeai F, Romain S, Capblancq T, Doniol-Valcroze P, Joron M, Lemaitre C, and Després L
- Subjects
- Animals, Genome, Chromosomes genetics, Synteny, Europe, Molecular Sequence Annotation, Butterflies genetics
- Abstract
We present the first chromosome-level genome assembly and annotation of the pearly heath Coenonympha arcania, generated with a PacBio HiFi sequencing approach and complemented with Hi-C data. We additionally compare synteny, gene, and repeat content between C. arcania and other Lepidopteran genomes. This reference genome will enable future population genomics studies with Coenonympha butterflies, a species-rich genus that encompasses some of the most highly endangered butterfly taxa in Europe., (© The Author(s) 2024. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2024
- Full Text
- View/download PDF
20. Genomic insights into Spiroplasma endosymbionts that induce male-killing and protective phenotypes in the pea aphid.
- Author
-
Arai H, Legeai F, Kageyama D, Sugio A, and Simon JC
- Subjects
- Animals, Male, Phenotype, Genomics, Virulence Factors genetics, Female, Pisum sativum microbiology, Pisum sativum parasitology, Spiroplasma genetics, Spiroplasma physiology, Spiroplasma classification, Aphids microbiology, Symbiosis, Genome, Bacterial, Phylogeny
- Abstract
The endosymbiotic bacteria Spiroplasma (Mollicutes) infect diverse plants and arthropods, and some of which induce male killing, where male hosts are killed during development. Male-killing Spiroplasma strains belong to either the phylogenetically distant Citri-Poulsonii or Ixodetis groups. In Drosophila flies, Spiroplasma poulsonii induces male killing via the Spaid toxin. While Spiroplasma ixodetis infects a wide range of insects and arachnids, little is known about the genetic basis of S. ixodetis-induced male killing. Here, we analyzed the genome of S. ixodetis strains in the pea aphid Acyrthosiphon pisum (Aphididae, Hemiptera). Genome sequencing constructed a complete genome of a male-killing strain, sAp269, consisting of a 1.5 Mb circular chromosome and an 80 Kb plasmid. sAp269 encoded putative virulence factors containing either ankyrin repeat, ovarian tumor-like deubiquitinase, or ribosome inactivating protein domains, but lacked the Spaid toxin. Further comparative genomics of Spiroplasma strains in A. pisum biotypes adapted to different host plants revealed their phylogenetic associations and the diversity of putative virulence factors. Although the mechanisms of S. ixodetis-induced male killing in pea aphids remain elusive, this study underlines the dynamic genome evolution of S. ixodetis and proposes independent acquisition events of male-killing mechanisms in insects., (© The Author(s) 2024. Published by Oxford University Press on behalf of FEMS.)
- Published
- 2024
- Full Text
- View/download PDF
21. Identification of transcriptional modules linked to the drought response of Brassica napus during seed development and their mitigation by early biotic stress.
- Author
-
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Vu BL, Baud S, To A, Manzanares-Dauleux MJ, Buitink J, and Nesi N
- Subjects
- Plant Proteins genetics, Plant Proteins metabolism, Plasmodiophorida physiology, Transcriptome genetics, Brassica napus genetics, Brassica napus physiology, Seeds genetics, Seeds growth & development, Droughts, Gene Expression Regulation, Plant, Stress, Physiological genetics
- Abstract
In order to capture the drought impacts on seed quality acquisition in Brassica napus and its potential interaction with early biotic stress, seeds of the 'Express' genotype of oilseed rape were characterized from late embryogenesis to full maturity from plants submitted to reduced watering (WS) with or without pre-occurring inoculation by the telluric pathogen Plasmodiophora brassicae (Pb + WS or Pb, respectively), and compared to control conditions (C). Drought as a single constraint led to significantly lower accumulation of lipids, higher protein content and reduced longevity of the WS-treated seeds. In contrast, when water shortage was preceded by clubroot infection, these phenotypic differences were completely abolished despite the upregulation of the drought sensor RD20. A weighted gene co-expression network of seed development in oilseed rape was generated using 72 transcriptomes from developing seeds from the four treatments and identified 33 modules. Module 29 was highly enriched in heat shock proteins and chaperones that showed a stronger upregulation in Pb + WS compared to the WS condition, pointing to a possible priming effect by the early P. brassicae infection on seed quality acquisition. Module 13 was enriched with genes encoding 12S and 2S seed storage proteins, with the latter being strongly upregulated under WS conditions. Cis-element promotor enrichment identified PEI1/TZF6, FUS3 and bZIP68 as putative regulators significantly upregulated upon WS compared to Pb + WS. Our results provide a temporal co-expression atlas of seed development in oilseed rape and will serve as a resource to characterize the plant response towards combinations of biotic and abiotic stresses., (© 2024 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.)
- Published
- 2024
- Full Text
- View/download PDF
22. Contrasting Evolutionary Patterns Between Sexual and Asexual Lineages in a Genomic Region Linked to Reproductive Mode Variation in the pea aphid.
- Author
-
Rimbault M, Legeai F, Peccoud J, Mieuzet L, Call E, Nouhaud P, Defendini H, Mahéo F, Marande W, Théron N, Tagu D, Le Trionnaire G, Simon JC, and Jaquiéry J
- Subjects
- Humans, Male, Animals, Female, Pisum sativum, Genetic Variation, Parthenogenesis genetics, Genomics, Reproduction, Asexual genetics, Aphids genetics
- Abstract
Although asexual lineages evolved from sexual lineages in many different taxa, the genetics of sex loss remains poorly understood. We addressed this issue in the pea aphid Acyrthosiphon pisum, whose natural populations encompass lineages performing cyclical parthenogenesis (CP) and producing one sexual generation per year, as well as obligate parthenogenetic (OP) lineages that can no longer produce sexual females but can still produce males. An SNP-based, whole-genome scan of CP and OP populations sequenced in pools (103 individuals from 6 populations) revealed that an X-linked region is associated with the variation in reproductive mode. This 840-kb region is highly divergent between CP and OP populations (FST = 34.9%), with >2,000 SNPs or short Indels showing a high degree of association with the phenotypic trait. In OP populations specifically, this region also shows reduced diversity and Tajima's D, consistent with the OP phenotype being a derived trait in aphids. Interestingly, the low genetic differentiation between CP and OP populations at the rest of the genome (FST = 2.5%) suggests gene flow between them. Males from OP lineages thus likely transmit their op allele to new genomic backgrounds. These genetic exchanges, combined with the selection of the OP and CP reproductive modes under different climates, probably contribute to the long-term persistence of the cp and op alleles., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
23. MTG-Link: leveraging barcode information from linked-reads to assemble specific loci.
- Author
-
Guichard A, Legeai F, Tagu D, and Lemaitre C
- Subjects
- Humans, Sequence Analysis, DNA methods, Genome, Human, High-Throughput Nucleotide Sequencing methods, Software
- Abstract
Background: Local assembly with short and long reads has proven to be very useful in many applications: reconstruction of the sequence of a locus of interest, gap-filling in draft assemblies, as well as alternative allele reconstruction of large Structural Variants. Whereas linked-read technologies have a great potential to assemble specific loci as they provide long-range information while maintaining the power and accuracy of short-read sequencing, there is a lack of local assembly tools for linked-read data., Results: We present MTG-Link, a novel local assembly tool dedicated to linked-reads. The originality of the method lies in its read subsampling step which takes advantage of the barcode information contained in linked-reads mapped in flanking regions. We validated our approach on several datasets from different linked-read technologies. We show that MTG-Link is able to assemble successfully large sequences, up to dozens of Kb. We also demonstrate that the read subsampling step of MTG-Link considerably improves the local assembly of specific loci compared to other existing short-read local assembly tools. Furthermore, MTG-Link was able to fully characterize large insertion variants and deletion breakpoints in a human genome and to reconstruct dark regions in clinically-relevant human genes. It also improved the contiguity of a 1.3 Mb locus of biological interest in several individual genomes of the mimetic butterfly Heliconius numata., Conclusions: MTG-Link is an efficient local assembly tool designed for different linked-read sequencing technologies. MTG-Link source code is available at https://github.com/anne-gcd/MTG-Link and as a Bioconda package., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
24. First chromosome scale genomes of ithomiine butterflies (Nymphalidae: Ithomiini): Comparative models for mimicry genetic studies.
- Author
-
Gauthier J, Meier J, Legeai F, McClure M, Whibley A, Bretaudeau A, Boulain H, Parrinello H, Mugford ST, Durbin R, Zhou C, McCarthy S, Wheat CW, Piron-Prunier F, Monsempes C, François MC, Jay P, Noûs C, Persyn E, Jacquin-Joly E, Meslin C, Montagné N, Lemaitre C, and Elias M
- Subjects
- Animals, Adaptation, Physiological, Phenotype, Genomics, Chromosomes genetics, Butterflies genetics
- Abstract
The ithomiine butterflies (Nymphalidae: Danainae) represent the largest known radiation of Müllerian mimetic butterflies. They dominate by number the mimetic butterfly communities, which include species such as the iconic neotropical Heliconius genus. Recent studies on the ecology and genetics of speciation in Ithomiini have suggested that sexual pheromones, colour pattern and perhaps hostplant could drive reproductive isolation. However, no reference genome was available for Ithomiini, which has hindered further exploration on the genetic architecture of these candidate traits, and more generally on the genomic patterns of divergence. Here, we generated high-quality, chromosome-scale genome assemblies for two Melinaea species, M. marsaeus and M. menophilus, and a draft genome of the species Ithomia salapia. We obtained genomes with a size ranging from 396 to 503 Mb across the three species and scaffold N50 of 40.5 and 23.2 Mb for the two chromosome-scale assemblies. Using collinearity analyses we identified massive rearrangements between the two closely related Melinaea species. An annotation of transposable elements and gene content was performed, as well as a specialist annotation to target chemosensory genes, which is crucial for host plant detection and mate recognition in mimetic species. A comparative genomic approach revealed independent gene expansions in ithomiines and particularly in gustatory receptor genes. These first three genomes of ithomiine mimetic butterflies constitute a valuable addition and a welcome comparison to existing biological models such as Heliconius, and will enable further understanding of the mechanisms of adaptation in butterflies., (© 2023 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.)
- Published
- 2023
- Full Text
- View/download PDF
25. Genome-wide identification of lncRNAs associated with viral infection in Spodoptera frugiperda .
- Author
-
Robin S, Legeai F, Jouan V, Ogliastro M, and Darboux I
- Subjects
- Animals, Spodoptera genetics, Gene Expression Profiling methods, RNA, Long Noncoding genetics, Polydnaviridae genetics, Virus Diseases
- Abstract
The role of lncRNAs in immune defence has been demonstrated in many multicellular and unicellular organisms. However, investigation of the identification and characterization of long non-coding RNAs (lncRNAs) involved in the insect immune response is still limited. In this study, we used RNA sequencing (RNA-seq) to investigate the expression profiles of lncRNAs and mRNAs in the fall armyworm Spodoptera frugiperda in response to virus infection. To assess the tissue- and virus-specificity of lncRNAs, we analysed and compared their expression profiles in haemocytes and fat body of larvae infected with two entomopathogenic viruses with different lifestyles, i.e. the polydnavirus HdIV ( Hyposoter didymator IchnoVirus) and the densovirus JcDV ( Junonia coenia densovirus). We identified 1883 candidate lncRNAs, of which 529 showed differential expression following viral infection. Expression profiles differed considerably between samples, indicating that many differentially expressed (DE) lncRNAs showed virus- and tissue-specific expression patterns. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and target prediction analyses indicated that DE-LncRNAs were mainly enriched in metabolic process, DNA replication and repair, immune response, metabolism of insect hormone and cell adhesion. In addition, we identified three DE-lncRNAs potentially acting as microRNA host genes, suggesting that they participate in gene regulation by producing miRNAs in response to virus infection. This study provides a catalogue of lncRNAs expressed in two important immune tissues and potential insight into their roles in the antiviral defence in S. frugiperda . The results may help future in-depth functional studies to better understand the biological function of lncRNAs in interaction between viruses and the fall armyworm.
- Published
- 2023
- Full Text
- View/download PDF
26. The evolutionary process of invasion in the fall armyworm (Spodoptera frugiperda).
- Author
-
Yainna S, Tay WT, Durand K, Fiteni E, Hilliou F, Legeai F, Clamens AL, Gimenez S, Asokan R, Kalleshwaraswamy CM, Deshmukh SS, Meagher RL Jr, Blanco CA, Silvie P, Brévault T, Dassou A, Kergoat GJ, Walsh T, Gordon K, Nègre N, d'Alençon E, and Nam K
- Subjects
- Humans, Animals, Phylogeny, Asia, Africa, Africa, Western, Spodoptera genetics
- Abstract
The fall armyworm (FAW; Spodoptera frugiperda) is one of the major agricultural pest insects. FAW is native to the Americas, and its invasion was first reported in West Africa in 2016. Then it quickly spread through Africa, Asia, and Oceania, becoming one of the main threats to corn production. We analyzed whole genome sequences of 177 FAW individuals from 12 locations on four continents to infer evolutionary processes of invasion. Principal component analysis from the TPI gene and whole genome sequences shows that invasive FAW populations originated from the corn strain. Ancestry coefficient and phylogenetic analyses from the nuclear genome indicate that invasive populations are derived from a single ancestry, distinct from native populations, while the mitochondrial phylogenetic tree supports the hypothesis of multiple introductions. Adaptive evolution specific to invasive populations was observed in detoxification, chemosensory, and digestion genes. We concluded that extant invasive FAW populations originated from the corn strain with potential contributions of adaptive evolution., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
27. Host-plant adaptation as a driver of incipient speciation in the fall armyworm (Spodoptera frugiperda).
- Author
-
Fiteni E, Durand K, Gimenez S, Meagher RL Jr, Legeai F, Kergoat GJ, Nègre N, d'Alençon E, and Nam K
- Subjects
- Humans, Animals, Spodoptera genetics, Reproductive Isolation, Gene Flow genetics, Zea mays genetics, Oryza genetics
- Abstract
Background: Divergent selection on host-plants is one of the main evolutionary forces driving ecological speciation in phytophagous insects. The ecological speciation might be challenging in the presence of gene flow and assortative mating because the direction of divergence is not necessarily the same between ecological selection (through host-plant adaptation) and assortative mating. The fall armyworm (FAW), a major lepidopteran pest species, is composed of two sympatric strains, corn and rice strains, named after two of their preferred host-plants. These two strains have been hypothesized to undergo incipient speciation, based on (i) several lines of evidence encompassing both pre- and post-zygotic reproductive isolation, and (ii) the presence of a substantial level of genetic differentiation. Even though the status of these two strains has been established a long time ago, it is still yet to be found whether these two strains indeed exhibit a marked level of genetic differentiation from a large number of genomic loci. Here, we analyzed whole genome sequences from 56 FAW individuals either collected from pasture grasses (a part of the favored host range of the rice strain) or corn to assess the role of host-plant adaptation in incipient speciation., Results: Principal component analysis of whole genome data shows that the pattern of divergence in the fall armyworm is predominantly explained by the genetic differentiation associated with host-plants. The level of genetic differentiation between corn and rice strains is particularly marked in the Z chromosome. We identified one autosomal locus and two Z chromosome loci targeted by selective sweeps specific to rice strain and corn strain, respectively. The autosomal locus has both increased D
XY and FST while the Z chromosome loci had decreased DXY and increased FST ., Conclusion: These results show that the FAW population structure is dominated by the genetic differentiation between corn and rice strains. This differentiation involves divergent selection targeting at least three loci, which include a locus potentially causing reproductive isolation. Taken together, these results suggest the evolutionary scenario that host-plant speciation is a driver of incipient speciation in the fall armyworm., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
28. Spodoptera littoralis genome mining brings insights on the dynamic of expansion of gustatory receptors in polyphagous noctuidae.
- Author
-
Meslin C, Mainet P, Montagné N, Robin S, Legeai F, Bretaudeau A, Johnston JS, Koutroumpa F, Persyn E, Monsempès C, François MC, and Jacquin-Joly E
- Subjects
- Animals, DNA Transposable Elements genetics, Receptors, Cell Surface genetics, Spodoptera genetics, Drosophila Proteins genetics, Taste
- Abstract
The bitter taste, triggered via gustatory receptors, serves as an important natural defense against the ingestion of poisonous foods in animals, and the increased host breadth is usually linked to an increase in the number of gustatory receptor genes. This has been especially observed in polyphagous insect species, such as noctuid species from the Spodoptera genus. However, the dynamic and physical mechanisms leading to these gene expansions and the evolutionary pressures behind them remain elusive. Among major drivers of genome dynamics are the transposable elements but, surprisingly, their potential role in insect gustatory receptor expansion has not been considered yet. In this work, we hypothesized that transposable elements and possibly positive selection would be involved in the highly dynamic evolution of gustatory receptor in Spodoptera spp. We first sequenced de novo the full 465 Mb genome of S. littoralis, and manually annotated the main chemosensory genes, including a large repertoire of 373 gustatory receptor genes (including 19 pseudogenes). We also improved the completeness of S. frugiperda and S. litura gustatory receptor gene repertoires. Then, we annotated transposable elements and revealed that a particular category of class I retrotransposons, the SINE transposons, was significantly enriched in the vicinity of gustatory receptor gene clusters, suggesting a transposon-mediated mechanism for the formation of these clusters. Selection pressure analyses indicated that positive selection within the gustatory receptor gene family is cryptic, only 7 receptors being identified as positively selected. Altogether, our data provide a new good quality Spodoptera genome, pinpoint interesting gustatory receptor candidates for further functional studies and bring valuable genomic information on the mechanisms of gustatory receptor expansions in polyphagous insect species., (© The Author(s) 2022. Published by Oxford University Press on behalf of Genetics Society of America.)
- Published
- 2022
- Full Text
- View/download PDF
29. Multi-Omic Investigation of Low-Nitrogen Conditional Resistance to Clubroot Reveals Brassica napus Genes Involved in Nitrate Assimilation.
- Author
-
Aigu Y, Daval S, Gazengel K, Marnet N, Lariagon C, Laperche A, Legeai F, Manzanares-Dauleux MJ, and Gravot A
- Abstract
Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae . Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae . Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2 - and NR -encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Aigu, Daval, Gazengel, Marnet, Lariagon, Laperche, Legeai, Manzanares-Dauleux and Gravot.)
- Published
- 2022
- Full Text
- View/download PDF
30. Comparative transcriptome analysis at the onset of speciation in a mimetic butterfly-The Ithomiini Melinaea marsaeus.
- Author
-
Piron-Prunier F, Persyn E, Legeai F, McClure M, Meslin C, Robin S, Alves-Carvalho S, Mohammad A, Blugeon C, Jacquin-Joly E, Montagné N, Elias M, and Gauthier J
- Subjects
- Animals, Gene Expression Profiling, Reproductive Isolation, Transcriptome, Wings, Animal, Butterflies genetics
- Abstract
Ecological speciation entails divergent selection on specific traits and ultimately on the developmental pathways responsible for these traits. Selection can act on gene sequences but also on regulatory regions responsible for gene expression. Mimetic butterflies are a relevant system for speciation studies because wing colour pattern (WCP) often diverges between closely related taxa and is thought to drive speciation through assortative mating and increased predation on hybrids. Here, we generate the first transcriptomic resources for a mimetic butterfly of the tribe Ithomiini, Melinaea marsaeus, to examine patterns of differential expression between two subspecies and between tissues that express traits that likely drive reproductive isolation; WCP and chemosensory genes. We sequenced whole transcriptomes of three life stages to cover a large catalogue of transcripts, and we investigated differential expression between subspecies in pupal wing discs and antennae. Eighteen known WCP genes were expressed in wing discs and 115 chemosensory genes were expressed in antennae, with a remarkable diversity of chemosensory protein genes. Many transcripts were differentially expressed between subspecies, including two WCP genes and one odorant receptor. Our results suggest that in M. marsaeus the same genes as in other mimetic butterflies are involved in traits causing reproductive isolation, and point at possible candidates for the differences in those traits between subspecies. Differential expression analyses of other developmental stages and body organs and functional studies are needed to confirm and expand these results. Our work provides key resources for comparative genomics in mimetic butterflies, and more generally in Lepidoptera., (© 2021 European Society for Evolutionary Biology.)
- Published
- 2021
- Full Text
- View/download PDF
31. LRez: a C++ API and toolkit for analyzing and managing Linked-Reads data.
- Author
-
Morisse P, Lemaitre C, and Legeai F
- Abstract
Motivation: Linked-Reads technologies combine both the high quality and low cost of short-reads sequencing and long-range information, through the use of barcodes tagging reads which originate from a common long DNA molecule. This technology has been employed in a broad range of applications including genome assembly, phasing and scaffolding, as well as structural variant calling. However, to date, no tool or API dedicated to the manipulation of Linked-Reads data exist., Results: We introduce LRez, a C++ API and toolkit that allows easy management of Linked-Reads data. LRez includes various functionalities, for computing numbers of common barcodes between genomic regions, extracting barcodes from BAM files, as well as indexing and querying BAM, FASTQ and gzipped FASTQ files to quickly fetch all reads or alignments containing a given barcode. LRez is compatible with a wide range of Linked-Reads sequencing technologies, and can thus be used in any tool or pipeline requiring barcode processing or indexing, in order to improve their performances., Availability and Implementation: LRez is implemented in C++, supported on Unix-based platforms and available under AGPL-3.0 License at https://github.com/morispi/LRez, and as a bioconda module., Supplementary Information: Supplementary data are available at Bioinformatics Advances online., (© The Author(s) 2021. Published by Oxford University Press.)
- Published
- 2021
- Full Text
- View/download PDF
32. RNA sequencing data for responses to drought stress and/or clubroot infection in developing seeds of Brassica napus .
- Author
-
Bianchetti G, Clouet V, Legeai F, Baron C, Gazengel K, Carrillo A, Manzanares-Dauleux MJ, Buitink J, and Nesi N
- Abstract
Oilseed rape ( Brassica napus L.) is the third largest oil crop worldwide. Like other crops, oilseed rape faces unfavorable environmental conditions resulting from multiple and combined actions of abiotic and biotic constraints that occur throughout the growing season. In particular drought severely reduces seed yield but also impacts seed quality in oilseed rape. In addition, clubroot disease, caused by the pathogen Plasmodiophora brassicae , limits the yield of the oilseed rape crops grown in infected areas. Clubroot induces swellings or galls on the roots that decrease the flow of water and nutrients within the plant. Furthermore, combinations of different stresses lead to complex plant responses that can not be predicted by the simple addition of individual stress responses. Indeed, an abiotic constraint can either reduce or stimulate the plant response to a pathogen or pest. Transcriptome datasets from different conditions are key resources to improve our knowledge of environmental stress-resistance mechanisms in plant organs. Here, we describe a RNA-seq dataset consisting of 72 samples of immature B. napus seeds from plants grown either under drought, infected with P. brassicae , or a combination of both stresses. A total of 67.6 Gb of transcriptome paired-end reads were filtered, mapped onto the B. napus reference genome Darmor- bzh and used for identification of differentially expressed genes and gene ontology enrichment. The raw reads are available under accession PRJNA738318 at NCBI Sequence Read Archive (SRA) repository. The dataset is a resource for the scientific community exploring seed plasticity., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article., (© 2021 The Author(s). Published by Elsevier Inc.)
- Published
- 2021
- Full Text
- View/download PDF
33. Plant-phenotypic changes induced by parasitoid ichnoviruses enhance the performance of both unparasitized and parasitized caterpillars.
- Author
-
Cusumano A, Urbach S, Legeai F, Ravallec M, Dicke M, Poelman EH, and Volkoff AN
- Subjects
- Animals, Herbivory, Host-Parasite Interactions, Larva, Proteomics, Polydnaviridae, Wasps
- Abstract
There is increasing awareness that interactions between plants and insects can be mediated by microbial symbionts. Nonetheless, evidence showing that symbionts associated with organisms beyond the second trophic level affect plant-insect interactions are restricted to a few cases belonging to parasitoid-associated bracoviruses. Insect parasitoids harbour a wide array of symbionts which, like bracoviruses, can be injected into their herbivorous hosts to manipulate their physiology and behaviour. Yet, the function of these symbionts in plant-based trophic webs remains largely overlooked. Here, we provide the first evidence of a parasitoid-associated symbiont belonging to the group of ichnoviruses which affects the strength of plant-insect interactions. A comparative proteomic analysis shows that, upon parasitoid injection of calyx fluid containing ichnovirus particles, the composition of salivary glands of caterpillars changes both qualitatively (presence of two viral-encoded proteins) and quantitatively (abundance of several caterpillar-resident enzymes, including elicitors such as glucose oxidase). In turn, plant phenotypic changes triggered by the altered composition of caterpillar oral secretions affect the performance of herbivores. Ichnovirus manipulation of plant responses to herbivory leads to benefits for their parasitoid partners in terms of reduced developmental time within the parasitized caterpillar. Interestingly, plant-mediated ichnovirus-induced effects also enhance the performances of unparasitized herbivores which in natural conditions may feed alongside parasitized ones. We discuss these findings in the context of ecological costs imposed to the plant by the viral symbiont of the parasitoid. Our results provide intriguing novel findings about the role played by carnivore-associated symbionts on plant-insect-parasitoid systems and underline the importance of placing mutualistic associations in an ecological perspective., (© 2021 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
34. Author Correction: Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization.
- Author
-
Gauthier J, Boulain H, van Vugt JJFA, Baudry L, Persyn E, Aury JM, Noel B, Bretaudeau A, Legeai F, Warris S, Chebbi MA, Dubreuil G, Duvic B, Kremer N, Gayral P, Musset K, Josse T, Bigot D, Bressac C, Moreau S, Periquet G, Harry M, Montagné N, Boulogne I, Sabeti-Azad M, Maïbèche M, Chertemps T, Hilliou F, Siaussat D, Amselem J, Luyten I, Capdevielle-Dulac C, Labadie K, Merlin BL, Barbe V, de Boer JG, Marbouty M, Cônsoli FL, Dupas S, Hua-Van A, Le Goff G, Bézier A, Jacquin-Joly E, Whitfield JB, Vet LEM, Smid HM, Kaiser L, Koszul R, Huguet E, Herniou EA, and Drezen JM
- Published
- 2021
- Full Text
- View/download PDF
35. Proteo-Trancriptomic Analyses Reveal a Large Expansion of Metalloprotease-Like Proteins in Atypical Venom Vesicles of the Wasp Meteorus pulchricornis (Braconidae).
- Author
-
Gatti JL, Belghazi M, Legeai F, Ravallec M, Frayssinet M, Robin S, Aboubakar-Souna D, Srinivasan R, Tamò M, Poirié M, and Volkoff AN
- Subjects
- Animals, Female, Gene Expression Profiling, Host-Parasite Interactions, Larva, Moths, Proteomics, Wasp Venoms metabolism, Wasps, Metalloproteases metabolism, Wasp Venoms genetics
- Abstract
Meteorus pulchricornis (Ichneumonoidea, Braconidae) is an endoparasitoid wasp of lepidopteran caterpillars. Its parasitic success relies on vesicles (named M. pulchricornis Virus-Like Particles or MpVLPs) that are synthesized in the venom gland and injected into the parasitoid host along with the venom during oviposition. In order to define the content and understand the biogenesis of these atypical vesicles, we performed a transcriptome analysis of the venom gland and a proteomic analysis of the venom and purified MpVLPs. About half of the MpVLPs and soluble venom proteins identified were unknown and no similarity with any known viral sequence was found. However, MpVLPs contained a large number of proteins labelled as metalloproteinases while the most abundant protein family in the soluble venom was that of proteins containing the Domain of Unknown Function DUF-4803. The high number of these proteins identified suggests that a large expansion of these two protein families occurred in M. pulchricornis . Therefore, although the exact mechanism of MpVLPs formation remains to be elucidated, these vesicles appear to be "metalloproteinase bombs" that may have several physiological roles in the host including modifying the functions of its immune cells. The role of DUF4803 proteins, also present in the venom of other braconids, remains to be clarified.
- Published
- 2021
- Full Text
- View/download PDF
36. Global patterns in genomic diversity underpinning the evolution of insecticide resistance in the aphid crop pest Myzus persicae.
- Author
-
Singh KS, Cordeiro EMG, Troczka BJ, Pym A, Mackisack J, Mathers TC, Duarte A, Legeai F, Robin S, Bielza P, Burrack HJ, Charaabi K, Denholm I, Figueroa CC, Ffrench-Constant RH, Jander G, Margaritopoulos JT, Mazzoni E, Nauen R, Ramírez CC, Ren G, Stepanyan I, Umina PA, Voronova NV, Vontas J, Williamson MS, Wilson ACC, Xi-Wu G, Youn YN, Zimmer CT, Simon JC, Hayward A, and Bass C
- Subjects
- Animals, Aphids classification, Aphids physiology, Base Sequence, Genomics methods, Geography, Host-Parasite Interactions drug effects, Mutation, Phylogeny, Plants parasitology, Polymorphism, Single Nucleotide, Sequence Homology, Nucleic Acid, Aphids genetics, Evolution, Molecular, Genetic Variation, Genome, Insect genetics, Insecticide Resistance genetics, Insecticides pharmacology
- Abstract
The aphid Myzus persicae is a destructive agricultural pest that displays an exceptional ability to develop resistance to both natural and synthetic insecticides. To investigate the evolution of resistance in this species we generated a chromosome-scale genome assembly and living panel of >110 fully sequenced globally sampled clonal lines. Our analyses reveal a remarkable diversity of resistance mutations segregating in global populations of M. persicae. We show that the emergence and spread of these mechanisms is influenced by host-plant associations, uncovering the widespread co-option of a host-plant adaptation that also offers resistance against synthetic insecticides. We identify both the repeated evolution of independent resistance mutations at the same locus, and multiple instances of the evolution of novel resistance mechanisms against key insecticides. Our findings provide fundamental insights into the genomic responses of global insect populations to strong selective forces, and hold practical relevance for the control of pests and parasites.
- Published
- 2021
- Full Text
- View/download PDF
37. Transcriptome Profiling of Starvation in the Peripheral Chemosensory Organs of the Crop Pest Spodoptera littoralis Caterpillars.
- Author
-
Poivet E, Gallot A, Montagné N, Senin P, Monsempès C, Legeai F, and Jacquin-Joly E
- Abstract
Starvation is frequently encountered by animals under fluctuating food conditions in nature, and response to it is vital for life span. Many studies have investigated the behavioral and physiological responses to starvation. In particular, starvation is known to induce changes in olfactory behaviors and olfactory sensitivity to food odorants, but the underlying mechanisms are not well understood. Here, we investigated the transcriptional changes induced by starvation in the chemosensory tissues of the caterpillar Spodoptera littoralis , using Illumina RNA sequencing. Gene expression profiling revealed 81 regulated transcripts associated with several biological processes, such as glucose metabolism, immune defense, response to stress, foraging activity, and olfaction. Focusing on the olfactory process, we observed changes in transcripts encoding proteins putatively involved in the peri-receptor events, namely, chemosensory proteins and odorant-degrading enzymes. Such modulation of their expression may drive fluctuations in the dynamics and the sensitivity of the olfactory receptor neuron response. In combination with the enhanced presynaptic activity mediated via the short neuropeptide F expressed during fasting periods, this could explain an enhanced olfactory detection process. Our observations suggest that a coordinated transcriptional response of peripheral chemosensory organs participates in the regulation of olfactory signal reception and olfactory-driven behaviors upon starvation.
- Published
- 2021
- Full Text
- View/download PDF
38. Chromosomal scale assembly of parasitic wasp genome reveals symbiotic virus colonization.
- Author
-
Gauthier J, Boulain H, van Vugt JJFA, Baudry L, Persyn E, Aury JM, Noel B, Bretaudeau A, Legeai F, Warris S, Chebbi MA, Dubreuil G, Duvic B, Kremer N, Gayral P, Musset K, Josse T, Bigot D, Bressac C, Moreau S, Periquet G, Harry M, Montagné N, Boulogne I, Sabeti-Azad M, Maïbèche M, Chertemps T, Hilliou F, Siaussat D, Amselem J, Luyten I, Capdevielle-Dulac C, Labadie K, Merlin BL, Barbe V, de Boer JG, Marbouty M, Cônsoli FL, Dupas S, Hua-Van A, Le Goff G, Bézier A, Jacquin-Joly E, Whitfield JB, Vet LEM, Smid HM, Kaiser L, Koszul R, Huguet E, Herniou EA, and Drezen JM
- Subjects
- Animals, Base Sequence, Conserved Sequence, Nudiviridae genetics, Receptors, Odorant genetics, Smell, Symbiosis, Synteny, Wasps virology, Biological Evolution, Chromosomes, Insect, Genome, Insect, Polydnaviridae genetics, Wasps genetics
- Abstract
Endogenous viruses form an important proportion of eukaryote genomes and a source of novel functions. How large DNA viruses integrated into a genome evolve when they confer a benefit to their host, however, remains unknown. Bracoviruses are essential for the parasitism success of parasitoid wasps, into whose genomes they integrated ~103 million years ago. Here we show, from the assembly of a parasitoid wasp genome at a chromosomal scale, that bracovirus genes colonized all ten chromosomes of Cotesia congregata. Most form clusters of genes involved in particle production or parasitism success. Genomic comparison with another wasp, Microplitis demolitor, revealed that these clusters were already established ~53 mya and thus belong to remarkably stable genomic structures, the architectures of which are evolutionary constrained. Transcriptomic analyses highlight temporal synchronization of viral gene expression without resulting in immune gene induction, suggesting that no conflicts remain between ancient symbiotic partners when benefits to them converge.
- Published
- 2021
- Full Text
- View/download PDF
39. Adaptation by copy number variation increases insecticide resistance in the fall armyworm.
- Author
-
Gimenez S, Abdelgaffar H, Goff GL, Hilliou F, Blanco CA, Hänniger S, Bretaudeau A, Legeai F, Nègre N, Jurat-Fuentes JL, d'Alençon E, and Nam K
- Subjects
- Animals, Cytochrome P-450 Enzyme System genetics, Female, Genome, Insect genetics, Nitriles pharmacology, Pyrethrins pharmacology, DNA Copy Number Variations genetics, Insecticide Resistance genetics, Insecticides pharmacology, Spodoptera drug effects, Spodoptera genetics
- Abstract
Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation.
- Published
- 2020
- Full Text
- View/download PDF
40. Correction to: The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.
- Author
-
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, and Tagu D
- Abstract
An amendment to this paper has been published and can be accessed via the original article.
- Published
- 2020
- Full Text
- View/download PDF
41. Big Genes, Small Effectors: Pea Aphid Cassette Effector Families Composed From Miniature Exons.
- Author
-
Dommel M, Oh J, Huguet-Tapia JC, Guy E, Boulain H, Sugio A, Murugan M, Legeai F, Heck M, Smith CM, and White FF
- Abstract
Aphids secrete proteins from their stylets that evidence indicates function similar to pathogen effectors for virulence. Here, we describe two small candidate effector gene families of the pea aphid, Acyrthosiphon pisum , that share highly conserved secretory signal peptide coding regions and divergent non-secretory coding sequences derived from miniature exons. The KQY candidate effector family contains eleven members with additional isoforms, generated by alternative splicing. Pairwise comparisons indicate possible four unique KQY families based on coding regions without the secretory signal region. KQY1a, a representative of the family, is encoded by a 968 bp mRNA and a gene that spans 45.7 kbp of the genome. The locus consists of 37 exons, 33 of which are 15 bp or smaller. Additional KQY members, as well as members of the KHI family, share similar features. Differential expression analyses indicate that the genes are expressed preferentially in salivary glands. Proteomic analysis on salivary glands and saliva revealed 11 KQY members in salivary proteins, and KQY1a was detected in an artificial diet solution after aphid feeding. A single KQY locus and two KHI loci were identified in Myzus persicae , the peach aphid. Of the genes that can be anchored to chromosomes, loci are mostly scattered throughout the genome, except a two-gene region (KQY4/KQY6). We propose that the KQY family expanded in A. pisum through combinatorial assemblies of a common secretory signal cassette and novel coding regions, followed by classical gene duplication and divergence., (Copyright © 2020 Dommel, Oh, Huguet-Tapia, Guy, Boulain, Sugio, Murugan, Legeai, Heck, Smith and White.)
- Published
- 2020
- Full Text
- View/download PDF
42. Selection following Gene Duplication Shapes Recent Genome Evolution in the Pea Aphid Acyrthosiphon pisum.
- Author
-
Fernández R, Marcet-Houben M, Legeai F, Richard G, Robin S, Wucher V, Pegueroles C, Gabaldón T, and Tagu D
- Subjects
- Animals, DNA Packaging, Gene Expression, Aphids genetics, Biological Evolution, Gene Duplication, Genome, Insect, Selection, Genetic
- Abstract
Ecology of insects is as wide as their diversity, which reflects their high capacity of adaptation in most of the environments of our planet. Aphids, with over 4,000 species, have developed a series of adaptations including a high phenotypic plasticity and the ability to feed on the phloem sap of plants, which is enriched in sugars derived from photosynthesis. Recent analyses of aphid genomes have indicated a high level of shared ancestral gene duplications that might represent a basis for genetic innovation and broad adaptations. In addition, there are a large number of recent, species-specific gene duplications whose role in adaptation remains poorly understood. Here, we tested whether duplicates specific to the pea aphid Acyrthosiphon pisum are related to genomic innovation by combining comparative genomics, transcriptomics, and chromatin accessibility analyses. Consistent with large levels of neofunctionalization, we found that most of the recent pairs of gene duplicates evolved asymmetrically, showing divergent patterns of positive selection and gene expression. Genes under selection involved a plethora of biological functions, suggesting that neofunctionalization and tissue specificity, among other evolutionary mechanisms, have orchestrated the evolution of recent paralogs in the pea aphid and may have facilitated host-symbiont cooperation. Our comprehensive phylogenomics analysis allowed us to tackle the history of duplicated genes to pave the road toward understanding the role of gene duplication in ecological adaptation., (© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.)
- Published
- 2020
- Full Text
- View/download PDF
43. Whole genome sequence of the soybean aphid, Aphis glycines.
- Author
-
Wenger JA, Cassone BJ, Legeai F, Johnston JS, Bansal R, Yates AD, Coates BS, Pavinato VAC, and Michel A
- Subjects
- Animals, Biological Evolution, Cytochrome P-450 Enzyme System genetics, DNA Transposable Elements genetics, Genome Size, Genomics, Pest Control, Phylogeny, Glycine max, Aphids genetics, Genome, Insect
- Abstract
Aphids are emerging as model organisms for both basic and applied research. Of the 5,000 estimated species, only three aphids have published whole genome sequences: the pea aphid Acyrthosiphon pisum, the Russian wheat aphid, Diuraphis noxia, and the green peach aphid, Myzus persicae. We present the whole genome sequence of a fourth aphid, the soybean aphid (Aphis glycines), which is an extreme specialist and an important invasive pest of soybean (Glycine max). The availability of genomic resources is important to establish effective and sustainable pest control, as well as to expand our understanding of aphid evolution. We generated a 302.9 Mbp draft genome assembly for Ap. glycines using a hybrid sequencing approach. This assembly shows high completeness with 19,182 predicted genes, 92% of known Ap. glycines transcripts mapping to contigs, and substantial continuity with a scaffold N
50 of 174,505 bp. The assembly represents 95.5% of the predicted genome size of 317.1 Mbp based on flow cytometry. Ap. glycines contains the smallest known aphid genome to date, based on updated genome sizes for 19 aphid species. The repetitive DNA content of the Ap. glycines genome assembly (81.6 Mbp or 26.94% of the 302.9 Mbp assembly) shows a reduction in the number of classified transposable elements compared to Ac. pisum, and likely contributes to the small estimated genome size. We include comparative analyses of gene families related to host-specificity (cytochrome P450's and effectors), which may be important in Ap. glycines evolution. This Ap. glycines draft genome sequence will provide a resource for the study of aphid genome evolution, their interaction with host plants, and candidate genes for novel insect control methods., (Copyright © 2017 Elsevier Ltd. All rights reserved.)- Published
- 2020
- Full Text
- View/download PDF
44. Genomic architecture of endogenous ichnoviruses reveals distinct evolutionary pathways leading to virus domestication in parasitic wasps.
- Author
-
Legeai F, Santos BF, Robin S, Bretaudeau A, Dikow RB, Lemaitre C, Jouan V, Ravallec M, Drezen JM, Tagu D, Baudat F, Gyapay G, Zhou X, Liu S, Webb BA, Brady SG, and Volkoff AN
- Subjects
- Animals, Species Specificity, Whole Genome Sequencing, Evolution, Molecular, Genome, Viral, Host Microbial Interactions, Polydnaviridae genetics, Wasps virology
- Abstract
Background: Polydnaviruses (PDVs) are mutualistic endogenous viruses inoculated by some lineages of parasitoid wasps into their hosts, where they facilitate successful wasp development. PDVs include the ichnoviruses and bracoviruses that originate from independent viral acquisitions in ichneumonid and braconid wasps respectively. PDV genomes are fully incorporated into the wasp genomes and consist of (1) genes involved in viral particle production, which derive from the viral ancestor and are not encapsidated, and (2) proviral segments harboring virulence genes, which are packaged into the viral particle. To help elucidating the mechanisms that have facilitated viral domestication in ichneumonid wasps, we analyzed the structure of the viral insertions by sequencing the whole genome of two ichnovirus-carrying wasp species, Hyposoter didymator and Campoletis sonorensis., Results: Assemblies with long scaffold sizes allowed us to unravel the organization of the endogenous ichnovirus and revealed considerable dispersion of the viral loci within the wasp genomes. Proviral segments contained species-specific sets of genes and occupied distinct genomic locations in the two ichneumonid wasps. In contrast, viral machinery genes were organized in clusters showing highly conserved gene content and order, with some loci located in collinear wasp genomic regions. This genomic architecture clearly differs from the organization of PDVs in braconid wasps, in which proviral segments are clustered and viral machinery elements are more dispersed., Conclusions: The contrasting structures of the two types of ichnovirus genomic elements are consistent with their different functions: proviral segments are vehicles for virulence proteins expected to adapt according to different host defense systems, whereas the genes involved in virus particle production in the wasp are likely more stable and may reflect ancestral viral architecture. The distinct genomic architectures seen in ichnoviruses versus bracoviruses reveal different evolutionary trajectories that have led to virus domestication in the two wasp lineages.
- Published
- 2020
- Full Text
- View/download PDF
45. The genome sequence of the grape phylloxera provides insights into the evolution, adaptation, and invasion routes of an iconic pest.
- Author
-
Rispe C, Legeai F, Nabity PD, Fernández R, Arora AK, Baa-Puyoulet P, Banfill CR, Bao L, Barberà M, Bouallègue M, Bretaudeau A, Brisson JA, Calevro F, Capy P, Catrice O, Chertemps T, Couture C, Delière L, Douglas AE, Dufault-Thompson K, Escuer P, Feng H, Forneck A, Gabaldón T, Guigó R, Hilliou F, Hinojosa-Alvarez S, Hsiao YM, Hudaverdian S, Jacquin-Joly E, James EB, Johnston S, Joubard B, Le Goff G, Le Trionnaire G, Librado P, Liu S, Lombaert E, Lu HL, Maïbèche M, Makni M, Marcet-Houben M, Martínez-Torres D, Meslin C, Montagné N, Moran NA, Papura D, Parisot N, Rahbé Y, Lopes MR, Ripoll-Cladellas A, Robin S, Roques C, Roux P, Rozas J, Sánchez-Gracia A, Sánchez-Herrero JF, Santesmasses D, Scatoni I, Serre RF, Tang M, Tian W, Umina PA, van Munster M, Vincent-Monégat C, Wemmer J, Wilson ACC, Zhang Y, Zhao C, Zhao J, Zhao S, Zhou X, Delmotte F, and Tagu D
- Subjects
- Animal Distribution, Animals, Introduced Species, Vitis, Adaptation, Biological genetics, Biological Evolution, Genome, Insect physiology, Hemiptera genetics
- Abstract
Background: Although native to North America, the invasion of the aphid-like grape phylloxera Daktulosphaira vitifoliae across the globe altered the course of grape cultivation. For the past 150 years, viticulture relied on grafting-resistant North American Vitis species as rootstocks, thereby limiting genetic stocks tolerant to other stressors such as pathogens and climate change. Limited understanding of the insect genetics resulted in successive outbreaks across the globe when rootstocks failed. Here we report the 294-Mb genome of D. vitifoliae as a basic tool to understand host plant manipulation, nutritional endosymbiosis, and enhance global viticulture., Results: Using a combination of genome, RNA, and population resequencing, we found grape phylloxera showed high duplication rates since its common ancestor with aphids, but similarity in most metabolic genes, despite lacking obligate nutritional symbioses and feeding from parenchyma. Similarly, no enrichment occurred in development genes in relation to viviparity. However, phylloxera evolved > 2700 unique genes that resemble putative effectors and are active during feeding. Population sequencing revealed the global invasion began from the upper Mississippi River in North America, spread to Europe and from there to the rest of the world., Conclusions: The grape phylloxera genome reveals genetic architecture relative to the evolution of nutritional endosymbiosis, viviparity, and herbivory. The extraordinary expansion in effector genes also suggests novel adaptations to plant feeding and how insects induce complex plant phenotypes, for instance galls. Finally, our understanding of the origin of this invasive species and its genome provide genetics resources to alleviate rootstock bottlenecks restricting the advancement of viticulture.
- Published
- 2020
- Full Text
- View/download PDF
46. MinYS: mine your symbiont by targeted genome assembly in symbiotic communities.
- Author
-
Guyomar C, Delage W, Legeai F, Mougel C, Simon JC, and Lemaitre C
- Abstract
Most metazoans are associated with symbionts. Characterizing the effect of a particular symbiont often requires getting access to its genome, which is usually done by sequencing the whole community. We present MinYS, a targeted assembly approach to assemble a particular genome of interest from such metagenomic data. First, taking advantage of a reference genome, a subset of the reads is assembled into a set of backbone contigs. Then, this draft assembly is completed using the whole metagenomic readset in a de novo manner. The resulting assembly is output as a genome graph, enabling different strains with potential structural variants coexisting in the sample to be distinguished. MinYS was applied to 50 pea aphid resequencing samples, with variable diversity in symbiont communities, in order to recover the genome sequence of its obligatory bacterial symbiont, Buchnera aphidicola . It was able to return high-quality assemblies (one contig assembly in 90% of the samples), even when using increasingly distant reference genomes, and to retrieve large structural variations in the samples. Because of its targeted essence, it outperformed standard metagenomic assemblers in terms of both time and assembly quality., (© The Author(s) 2019. Published by Oxford University Press on behalf of NAR Genomics and Bioinformatics.)
- Published
- 2020
- Full Text
- View/download PDF
47. Functional insights from the GC-poor genomes of two aphid parasitoids, Aphidius ervi and Lysiphlebus fabarum.
- Author
-
Dennis AB, Ballesteros GI, Robin S, Schrader L, Bast J, Berghöfer J, Beukeboom LW, Belghazi M, Bretaudeau A, Buellesbach J, Cash E, Colinet D, Dumas Z, Errbii M, Falabella P, Gatti JL, Geuverink E, Gibson JD, Hertaeg C, Hartmann S, Jacquin-Joly E, Lammers M, Lavandero BI, Lindenbaum I, Massardier-Galata L, Meslin C, Montagné N, Pak N, Poirié M, Salvia R, Smith CR, Tagu D, Tares S, Vogel H, Schwander T, Simon JC, Figueroa CC, Vorburger C, Legeai F, and Gadau J
- Subjects
- Animals, Aphids immunology, DNA Methylation genetics, GC Rich Sequence, Insect Proteins genetics, Sex Determination Processes genetics, Venoms genetics, Wasps immunology, Aphids genetics, Genomics, Wasps genetics
- Abstract
Background: Parasitoid wasps have fascinating life cycles and play an important role in trophic networks, yet little is known about their genome content and function. Parasitoids that infect aphids are an important group with the potential for biological control. Their success depends on adapting to develop inside aphids and overcoming both host aphid defenses and their protective endosymbionts., Results: We present the de novo genome assemblies, detailed annotation, and comparative analysis of two closely related parasitoid wasps that target pest aphids: Aphidius ervi and Lysiphlebus fabarum (Hymenoptera: Braconidae: Aphidiinae). The genomes are small (139 and 141 Mbp) and the most AT-rich reported thus far for any arthropod (GC content: 25.8 and 23.8%). This nucleotide bias is accompanied by skewed codon usage and is stronger in genes with adult-biased expression. AT-richness may be the consequence of reduced genome size, a near absence of DNA methylation, and energy efficiency. We identify missing desaturase genes, whose absence may underlie mimicry in the cuticular hydrocarbon profile of L. fabarum. We highlight key gene groups including those underlying venom composition, chemosensory perception, and sex determination, as well as potential losses in immune pathway genes., Conclusions: These findings are of fundamental interest for insect evolution and biological control applications. They provide a strong foundation for further functional studies into coevolution between parasitoids and their hosts. Both genomes are available at https://bipaa.genouest.org.
- Published
- 2020
- Full Text
- View/download PDF
48. Contrasting genomic and phenotypic outcomes of hybridization between pairs of mimetic butterfly taxa across a suture zone.
- Author
-
Gauthier J, de Silva DL, Gompert Z, Whibley A, Houssin C, Le Poul Y, McClure M, Lemaitre C, Legeai F, Mallet J, and Elias M
- Subjects
- Animals, Butterflies classification, Genetic Speciation, Genome, Insect, Genotype, Peru, Phenotype, Polymorphism, Single Nucleotide, Reproductive Isolation, Wings, Animal anatomy & histology, Butterflies genetics, Genetics, Population, Hybridization, Genetic
- Abstract
Hybrid zones, whereby divergent lineages come into contact and eventually hybridize, can provide insights on the mechanisms involved in population differentiation and reproductive isolation, and ultimately speciation. Suture zones offer the opportunity to compare these processes across multiple species. In this paper we use reduced-complexity genomic data to compare the genetic and phenotypic structure and hybridization patterns of two mimetic butterfly species, Ithomia salapia and Oleria onega (Nymphalidae: Ithomiini), each consisting of a pair of lineages differentiated for their wing colour pattern and that come into contact in the Andean foothills of Peru. Despite similarities in their life history, we highlight major differences, both at the genomic and phenotypic level, between the two species. These differences include the presence of hybrids, variations in wing phenotype, and genomic patterns of introgression and differentiation. In I. salapia, the two lineages appear to hybridize only rarely, whereas in O. onega the hybrids are not only more common, but also genetically and phenotypically more variable. We also detected loci statistically associated with wing colour pattern variation, but in both species these loci were not over-represented among the candidate barrier loci, suggesting that traits other than wing colour pattern may be important for reproductive isolation. Our results contrast with the genomic patterns observed between hybridizing lineages in the mimetic Heliconius butterflies, and call for a broader investigation into the genomics of speciation in Ithomiini - the largest radiation of mimetic butterflies., (© 2020 John Wiley & Sons Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
49. RNA interference identifies domesticated viral genes involved in assembly and trafficking of virus-derived particles in ichneumonid wasps.
- Author
-
Lorenzi A, Ravallec M, Eychenne M, Jouan V, Robin S, Darboux I, Legeai F, Gosselin-Grenet AS, Sicard M, Stoltz D, and Volkoff AN
- Subjects
- Animals, Genes, Viral genetics, Polydnaviridae genetics, RNA Interference, Virion physiology, Wasps genetics, Wasps virology
- Abstract
There are many documented examples of viral genes retained in the genomes of multicellular organisms that may in some cases bring new beneficial functions to the receivers. The ability of certain ichneumonid parasitic wasps to produce virus-derived particles, the so-called ichnoviruses (IVs), not only results from the capture and domestication of single viral genes but of almost entire ancestral virus genome(s). Indeed, following integration into wasp chromosomal DNA, the putative and still undetermined IV ancestor(s) evolved into encoding a 'virulence gene delivery vehicle' that is now required for successful infestation of wasp hosts. Several putative viral genes, which are clustered in distinct regions of wasp genomes referred to as IVSPERs (Ichnovirus Structural Protein Encoding Regions), have been assumed to be involved in virus-derived particles morphogenesis, but this question has not been previously functionally addressed. In the present study, we have successfully combined RNA interference and transmission electron microscopy to specifically identify IVSPER genes that are responsible for the morphogenesis and trafficking of the virus-derived particles in ovarian cells of the ichneumonid wasp Hyposoter didymator. We suggest that ancestral viral genes retained within the genomes of certain ichneumonid parasitoids possess conserved functions which were domesticated for the purpose of assembling viral vectors for the delivery of virulence genes to parasitized host animals., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2019
- Full Text
- View/download PDF
50. Differential Expression of Candidate Salivary Effector Genes in Pea Aphid Biotypes With Distinct Host Plant Specificity.
- Author
-
Boulain H, Legeai F, Jaquiéry J, Guy E, Morlière S, Simon JC, and Sugio A
- Abstract
Effector proteins play crucial roles in determining the outcome of various plant-parasite interactions. Aphids inject salivary effector proteins into plants to facilitate phloem feeding, but some proteins might trigger defense responses in certain plants. The pea aphid, Acyrthosiphon pisum , forms multiple biotypes, and each biotype is specialized to feed on a small number of closely related legume species. Interestingly, all the previously identified biotypes can feed on Vicia faba ; hence, it serves as a universal host plant of A. pisum . We hypothesized that the salivary effector proteins have a key role in determining the compatibility between specific host species and A. pisum biotypes and that each biotype produces saliva containing a specific mixture of effector proteins due to differential expression of encoding genes. As the first step to address these hypotheses, we conducted two sets of RNA-seq experiments. RNA-seq analysis of dissected salivary glands (SGs) from reference alfalfa- and pea-specialized A. pisum lines revealed common and line-specific repertoires of candidate salivary effector genes. Based on the results, we created an extended catalogue of A. pisum salivary effector candidates. Next, we used aphid head samples, which contain SGs, to examine biotype-specific expression patterns of candidate salivary genes. RNA-seq analysis of head samples of alfalfa- and pea-specialized biotypes, each represented by three genetically distinct aphid lines reared on either a universal or specific host plant, showed that a majority of the candidate salivary effector genes was expressed in both biotypes at a similar level. Nonetheless, we identified small sets of genes that were differentially regulated in a biotype-specific manner. Little host plant effect (universal vs. specific) was observed on the expression of candidate salivary genes. Analysis of previously obtained genome re-sequenced data of the two biotypes revealed the copy number variations that might explain the differential expression of some candidate salivary genes. In addition, at least four candidate effector genes that were present in the alfalfa biotype but might not be encoded in the pea biotype were identified. This work sets the stage for future functional characterization of candidate genes potentially involved in the determination of plant specificity of pea aphid biotypes., (Copyright © 2019 Boulain, Legeai, Jaquiéry, Guy, Morlière, Simon and Sugio.)
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.