14 results on '"Mary E. Anderson"'
Search Results
2. Tuning interfacial interactions for bottom‐up assembly of surface‐anchored metal‐organic frameworks to tailor film morphology and pattern surface features
- Author
-
Christine D. Fasana, Fabiola G. Gonzalez, Jonathan W. Wade, Ashley M. Weeks, B. Dulani Dhanapala, and Mary E. Anderson
- Subjects
atomic force microscopy ,microcontact printing ,MOF‐14 ,self‐assembled monolayers ,surface‐anchored metal‐organic frameworks ,Chemistry ,QD1-999 ,Biology (General) ,QH301-705.5 - Abstract
Abstract Surface‐anchored metal‐organic frameworks (surMOFs) integrate nanoporous supramolecular MOF materials directly into architectures for applications such as gas storage, chemical sensing, and energy storage. Layer‐by‐layer solution‐phase deposition of the MOF‐14 components (1,3,5‐tris(4‐carboxyphenyl)benzene and copper (II) dimers, respectively) produces a porous and conformal film on carboxyl‐terminated self‐assembled monolayers (SAMs). In this research, the formation of ultrathin (less than 25 nm) surMOF films on codeposited bicomponent SAMs and microcontact printed SAMs is investigated by atomic force microscopy, ellipsometry, infrared spectroscopy, and contact angle goniometry. SAMs composed of methyl‐terminated alkanethiols assembled on gold substrates inhibit surMOF formation, whereas carboxyl‐terminated alkanethiols promote MOF‐14‐based film growth. To tune the density of carboxyl groups that anchor the film, methyl‐ and carboxyl‐terminated alkanethiols of varying concentrations are codeposited on gold. This systematic study demonstrates how surMOF film formation and morphology are impacted by these SAMs with mixed surface functionalities. Chemical patterning methods for SAMs, such as microcontact printing (μCP), commonly have mixed chemical functionalities within certain regions of the pattern. Insights gained regarding how mixed surface functionalities affect surMOF film formation are applied herein to optimize the μCP method to produce chemically patterned SAMs that selectively direct surMOF assembly to produce high‐quality surMOF film features.
- Published
- 2022
- Full Text
- View/download PDF
3. Exogenous expression of the glycosyltransferase LARGE1 restores α-dystroglycan matriglycan and laminin binding in rhabdomyosarcoma
- Author
-
Daniel Beltrán, Mary E. Anderson, Narendra Bharathy, Teagan P. Settelmeyer, Matthew N. Svalina, Zia Bajwa, John F. Shern, Sakir H. Gultekin, Marco A. Cuellar, Takahiro Yonekawa, Charles Keller, and Kevin P. Campbell
- Subjects
Dystroglycan ,Matriglycan ,LARGE1 ,Rhabdomyosarcoma ,Laminin ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background α-Dystroglycan is the highly glycosylated component of the dystrophin-glycoprotein complex (DGC) that binds with high-affinity to extracellular matrix (ECM) proteins containing laminin-G-like (LG) domains via a unique heteropolysaccharide [-GlcA-beta1,3-Xyl-alpha1,3-]n called matriglycan. Changes in expression of components of the DGC or in the O-glycosylation of α-dystroglycan result in muscular dystrophy but are also observed in certain cancers. In mice, the loss of either of two DGC proteins, dystrophin or α-sarcoglycan, is associated with a high incidence of rhabdomyosarcoma (RMS). In addition, glycosylation of α-dystroglycan is aberrant in a small cohort of human patients with RMS. Since both the glycosylation of α-dystroglycan and its function as an ECM receptor require over 18 post-translational processing enzymes, we hypothesized that understanding its role in the pathogenesis of RMS requires a complete analysis of the expression of dystroglycan-modifying enzymes and the characterization of α-dystroglycan glycosylation in the context of RMS. Methods A series of cell lines and biopsy samples from human and mouse RMS were analyzed for the glycosylation status of α-dystroglycan and for expression of the genes encoding the responsible enzymes, in particular those required for the addition of matriglycan. Furthermore, the glycosyltransferase LARGE1 was ectopically expressed in RMS cells to determine its effects on matriglycan modifications and the ability of α-dystroglycan to function as a laminin receptor. Results Immunohistochemistry and immunoblotting of a collection of primary RMS tumors show that although α-dystroglycan is consistently expressed and glycosylated in these tumors, α-dystroglycan lacks matriglycan and the ability to bind laminin. Similarly, in a series of cell lines derived from human and mouse RMS, α-dystroglycan lacks matriglycan modification and the ability to bind laminin. RNAseq data from RMS cell lines was analyzed for expression of the genes known to be involved in α-dystroglycan glycosylation, which revealed that, for most cell lines, the lack of matriglycan can be attributed to the downregulation of the dystroglycan-modifying enzyme LARGE1. Ectopic expression of LARGE1 in these cell cultures restored matriglycan to levels comparable to those in muscle and restored high-affinity laminin binding to α-dystroglycan. Conclusions Collectively, our findings demonstrate that a lack of matriglycan on α-dystroglycan is a common feature in RMS due to the downregulation of LARGE1, and that ectopic expression of LARGE1 can restore matriglycan modifications and the ability of α-dystroglycan to function as an ECM receptor.
- Published
- 2019
- Full Text
- View/download PDF
4. Multifocal pleomorphic dermal sarcoma and the role of inflammation and immunosuppression in a lung transplant patient: a case report
- Author
-
Mary E. Anderson, Nemanja Rodic, Antonio Subtil, Dawn Queen, Selim Arcasoy, George W. Niedt, Peter W. Heald, and Larisa J. Geskin
- Subjects
Pleomorphic dermal sarcoma ,Alpha-1-antitrypsin deficiency ,Transplantation ,Immunosuppression ,Inflammation ,Medicine - Abstract
Abstract Background Pleomorphic dermal sarcoma is the cutaneous variant of undifferentiated pleomorphic sarcoma. It is a rare malignancy of unclear histogenesis; it is a diagnosis of exclusion that requires extensive use of immunohistochemistry to rule out other malignancies. Pleomorphic dermal sarcoma typically presents as a solitary tumor in sun-exposed areas and may have unpredictable clinical behavior, with some tumors associated with metastasis and death. Case presentation We present an unusual case of multifocal pleomorphic dermal sarcoma arising in the areas of alpha-1-antitrypsin deficiency panniculitis in a lung transplant patient. Our patient was a 58-year-old white woman whose initial presentation was consistent with alpha-1-antitrypsin deficiency panniculitis. She then developed extensive multifocal, bleeding, and ulcerated nodules in the areas of the panniculitis. A skin biopsy was consistent with a diagnosis of pleomorphic dermal sarcoma. Her immunosuppressive regimen was decreased, and she was treated with liposomal doxorubicin 40 mg/m2 every 3 weeks with some initial improvement in the size of her tumors. However, soon after beginning therapy, she developed pneumonia and septic shock and ultimately died from multi-organ failure. Conclusions We hypothesize that chronic, multifocal inflammation in the skin in the setting of immunosuppression led to simultaneous, malignant transformation in numerous skin lesions. We discuss the challenges of diagnosing pleomorphic dermal sarcoma, therapeutic options, and stress the need for multidisciplinary management of these cases.
- Published
- 2019
- Full Text
- View/download PDF
5. Genetic Mutations in the S-loop of Human Glutathione Synthetase: Links Between Substrate Binding, Active Site Structure and Allostery
- Author
-
Brandall L. Ingle, Bisesh Shrestha, Margarita C. De Jesus, Heather M. Conrad-Webb, Mary E. Anderson, and Thomas R. Cundari
- Subjects
Biotechnology ,TP248.13-248.65 - Abstract
The second step in the biosynthesis of the cellular antioxidant glutathione (GSH) is catalyzed by human glutathione synthetase (hGS), a negatively cooperative homodimer. Patients with mutations in hGS have been reported to exhibit a range of symptoms from hemolytic anemia and metabolic acidosis to neurological disorders and premature death. Several patient mutations occur in the S-loop of hGS, a series of residues near the negatively cooperative γ-GC substrate binding site. Experimental point mutations and molecular dynamic simulations show the S-loop not only binds γ-GC through a salt bridge and multiple hydrogen bonds, but the residues also modulate allosteric communication in hGS. By elucidating the role of S-loop residues in active site structure, substrate binding, and allostery, the atomic level sequence of events that leads to the detrimental effects of hGS mutations in patients are more fully understood.
- Published
- 2019
- Full Text
- View/download PDF
6. Biochemical and pathological changes result from mutated Caveolin-3 in muscle
- Author
-
José Andrés González Coraspe, Joachim Weis, Mary E. Anderson, Ute Münchberg, Kristina Lorenz, Stephan Buchkremer, Stephanie Carr, René Peiman Zahedi, Eva Brauers, Hannah Michels, Yoshihide Sunada, Hanns Lochmüller, Kevin P. Campbell, Erik Freier, Denisa Hathazi, and Andreas Roos
- Subjects
Caveolin-3 ,Caveolinopathy ,LGMD1C ,Chaperonopathy ,Protein aggregate ,Skeletal muscle proteomics ,Diseases of the musculoskeletal system ,RC925-935 - Abstract
Abstract Background Caveolin-3 (CAV3) is a muscle-specific protein localized to the sarcolemma. It was suggested that CAV3 is involved in the connection between the extracellular matrix (ECM) and the cytoskeleton. Caveolinopathies often go along with increased CK levels indicative of sarcolemmal damage. So far, more than 40 dominant pathogenic mutations have been described leading to several phenotypes many of which are associated with a mis-localization of the mutant protein to the Golgi. Golgi retention and endoplasmic reticulum (ER) stress has been demonstrated for the CAV3 p.P104L mutation, but further downstream pathophysiological consequences remained elusive so far. Methods We utilized a transgenic (p.P104L mutant) mouse model and performed proteomic profiling along with immunoprecipitation, immunofluorescence and immunoblot examinations (including examination of α-dystroglycan glycosylation), and morphological studies (electron and coherent anti-Stokes Raman scattering (CARS) microscopy) in a systematic investigation of molecular and subcellular events in p.P104L caveolinopathy. Results Our electron and CARS microscopic as well as immunological studies revealed Golgi and ER proliferations along with a build-up of protein aggregates further characterized by immunoprecipitation and subsequent mass spectrometry. Molecular characterization these aggregates showed affection of mitochondrial and cytoskeletal proteins which accords with our ultra-structural findings. Additional global proteomic profiling revealed vulnerability of 120 proteins in diseased quadriceps muscle supporting our previous findings and providing more general insights into the underlying pathophysiology. Moreover, our data suggested that further DGC components are altered by the perturbed protein processing machinery but are not prone to form aggregates whereas other sarcolemmal proteins are ubiquitinated or bind to p62. Although the architecture of the ER and Golgi as organelles of protein glycosylation are altered, the glycosylation of α-dystroglycan presented unchanged. Conclusions Our combined data classify the p.P104 caveolinopathy as an ER-Golgi disorder impairing proper protein processing and leading to aggregate formation pertaining proteins important for mitochondrial function, cytoskeleton, ECM remodeling and sarcolemmal integrity. Glycosylation of sarcolemmal proteins seems to be normal. The new pathophysiological insights might be of relevance for the development of therapeutic strategies for caveolinopathy patients targeting improved protein folding capacity.
- Published
- 2018
- Full Text
- View/download PDF
7. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth
- Author
-
Landon J. Brower, Lauren K. Gentry, Amanda L. Napier, and Mary E. Anderson
- Subjects
atomic force microscopy ,copper(II) 1,3,5-benzenetricarboxylate ,ellipsometry ,surface-anchored metal-organic frameworks ,Technology ,Chemical technology ,TP1-1185 ,Science ,Physics ,QC1-999 - Abstract
Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.
- Published
- 2017
- Full Text
- View/download PDF
8. Comparison of Surface-Bound and Free-Standing Variations of HKUST-1 MOFs: Effect of Activation and Ammonia Exposure on Morphology, Crystallinity, and Composition
- Author
-
Brandon H. Bowser, Landon J. Brower, Monica L. Ohnsorg, Lauren K. Gentry, Christopher K. Beaudoin, and Mary E. Anderson
- Subjects
metal-organic framework ,microscopy ,thin films ,powders ,Chemistry ,QD1-999 - Abstract
Metal-organic frameworks (MOFs) are extremely porous, crystalline materials with high surface area for potential use in gas storage, sequestration, and separations. Toward incorporation into structures for these applications, this study compares three variations of surface-bound and free-standing HKUST-1 MOF structures: surface-anchored MOF (surMOF) thin film, drop-cast film, and bulk powder. Herein, effects of HKUST-1 ammonia interaction and framework activation, which is removal of guest molecules via heat, are investigated. Impact on morphology and crystal structure as a function of surface confinement and size variance are examined. Scanning probe microscopy, scanning electron microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, and energy dispersive X-ray spectroscopy monitor changes in morphology and crystal structure, track ammonia uptake, and examine elemental composition. After fabrication, ammonia uptake is observed for all MOF variations, but reveals dramatic morphological and crystal structure changes. However, activation of the framework was found to stabilize morphology. For activated surMOF films, findings demonstrate consistent morphology throughout uptake, removal, and recycling of ammonia over multiple exposures. To understand morphological effects, additional ammonia exposure experiments with controlled post-synthetic solvent adsorbates were conducted utilizing a HKUST-1 standard powder. These findings are foundational for determining the capabilities and limitation of MOF films and powders.
- Published
- 2018
- Full Text
- View/download PDF
9. POMK regulates dystroglycan function via LARGE1-mediated elongation of matriglycan
- Author
-
Ameya S Walimbe, Hidehiko Okuma, Soumya Joseph, Tiandi Yang, Takahiro Yonekawa, Jeffrey M Hord, David Venzke, Mary E Anderson, Silvia Torelli, Adnan Manzur, Megan Devereaux, Marco Cuellar, Sally Prouty, Saul Ocampo Landa, Liping Yu, Junyu Xiao, Jack E Dixon, Francesco Muntoni, and Kevin P Campbell
- Subjects
dystroglycan ,matriglycan ,LARGE ,POMK ,laminin ,muscular dystrophy ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Matriglycan [-GlcA-β1,3-Xyl-α1,3-]n serves as a scaffold in many tissues for extracellular matrix proteins containing laminin-G domains including laminin, agrin, and perlecan. Like-acetyl-glucosaminyltransferase 1 (LARGE1) synthesizes and extends matriglycan on α-dystroglycan (α-DG) during skeletal muscle differentiation and regeneration; however, the mechanisms which regulate matriglycan elongation are unknown. Here, we show that Protein O-Mannose Kinase (POMK), which phosphorylates mannose of core M3 (GalNAc-β1,3-GlcNAc-β1,4-Man) preceding matriglycan synthesis, is required for LARGE1-mediated generation of full-length matriglycan on α-DG (~150 kDa). In the absence of Pomk gene expression in mouse skeletal muscle, LARGE1 synthesizes a very short matriglycan resulting in a ~ 90 kDa α-DG which binds laminin but cannot prevent eccentric contraction-induced force loss or muscle pathology. Solution NMR spectroscopy studies demonstrate that LARGE1 directly interacts with core M3 and binds preferentially to the phosphorylated form. Collectively, our study demonstrates that phosphorylation of core M3 by POMK enables LARGE1 to elongate matriglycan on α-DG, thereby preventing muscular dystrophy.
- Published
- 2020
- Full Text
- View/download PDF
10. Structure of protein O-mannose kinase reveals a unique active site architecture
- Author
-
Qinyu Zhu, David Venzke, Ameya S Walimbe, Mary E Anderson, Qiuyu Fu, Lisa N Kinch, Wei Wang, Xing Chen, Nick V Grishin, Niu Huang, Liping Yu, Jack E Dixon, Kevin P Campbell, and Junyu Xiao
- Subjects
muscular dystrophy ,dystroglycan biosynthesis ,secretory pathway kinase ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
The ‘pseudokinase’ SgK196 is a protein O-mannose kinase (POMK) that catalyzes an essential phosphorylation step during biosynthesis of the laminin-binding glycan on α-dystroglycan. However, the catalytic mechanism underlying this activity remains elusive. Here we present the crystal structure of Danio rerio POMK in complex with Mg2+ ions, ADP, aluminum fluoride, and the GalNAc-β3-GlcNAc-β4-Man trisaccharide substrate, thereby providing a snapshot of the catalytic transition state of this unusual kinase. The active site of POMK is established by residues located in non-canonical positions and is stabilized by a disulfide bridge. GalNAc-β3-GlcNAc-β4-Man is recognized by a surface groove, and the GalNAc-β3-GlcNAc moiety mediates the majority of interactions with POMK. Expression of various POMK mutants in POMK knockout cells further validated the functional requirements of critical residues. Our results provide important insights into the ability of POMK to function specifically as a glycan kinase, and highlight the structural diversity of the human kinome.
- Published
- 2016
- Full Text
- View/download PDF
11. Fundamentals of MOF Thin Film Growth via Liquid-PhaseEpitaxy: Investigating the Initiation of Deposition and the Influenceof Temperature.
- Author
-
MonicaL. Ohnsorg, Christopher K. Beaudoin, and Mary E. Anderson
- Published
- 2015
- Full Text
- View/download PDF
12. N-terminal domain on dystroglycan enables LARGE1 to extend matriglycan on α-dystroglycan and prevents muscular dystrophy
- Author
-
Hidehiko Okuma, Jeffrey M Hord, Ishita Chandel, David Venzke, Mary E Anderson, Ameya S Walimbe, Soumya Joseph, Zeita Gastel, Yuji Hara, Fumiaki Saito, Kiichiro Matsumura, and Kevin P Campbell
- Subjects
LARGE1 ,dystroglycan ,muscular dystrophy ,Medicine ,Science ,Biology (General) ,QH301-705.5 - Abstract
Dystroglycan (DG) requires extensive post-translational processing and O-glycosylation to function as a receptor for extracellular matrix (ECM) proteins containing laminin-G (LG) domains. Matriglycan is an elongated polysaccharide of alternating xylose (Xyl) and glucuronic acid (GlcA) that binds with high affinity to ECM proteins with LG domains and is uniquely synthesized on α-dystroglycan (α-DG) by like-acetylglucosaminyltransferase-1 (LARGE1). Defects in the post-translational processing or O-glycosylation of α-DG that result in a shorter form of matriglycan reduce the size of α-DG and decrease laminin binding, leading to various forms of muscular dystrophy. Previously, we demonstrated that protein O-mannose kinase (POMK) is required for LARGE1 to generate full-length matriglycan on α-DG (~150–250 kDa) (Walimbe et al., 2020). Here, we show that LARGE1 can only synthesize a short, non-elongated form of matriglycan in mouse skeletal muscle that lacks the DG N-terminus (α-DGN), resulting in an ~100–125 kDa α-DG. This smaller form of α-DG binds laminin and maintains specific force but does not prevent muscle pathophysiology, including reduced force production after eccentric contractions (ECs) or abnormalities in the neuromuscular junctions. Collectively, our study demonstrates that α-DGN, like POMK, is required for LARGE1 to extend matriglycan to its full mature length on α-DG and thus prevent muscle pathophysiology.
- Published
- 2023
- Full Text
- View/download PDF
13. Beneficial and detrimental genes in the cellular response to replication arrest.
- Author
-
Luciane Schons-Fonseca, Milena D Lazova, Janet L Smith, Mary E Anderson, and Alan D Grossman
- Subjects
Genetics ,QH426-470 - Abstract
DNA replication is essential for all living organisms. Several events can disrupt replication, including DNA damage (e.g., pyrimidine dimers, crosslinking) and so-called "roadblocks" (e.g., DNA-binding proteins or transcription). Bacteria have several well-characterized mechanisms for repairing damaged DNA and then restoring functional replication forks. However, little is known about the repair of stalled or arrested replication forks in the absence of chemical alterations to DNA. Using a library of random transposon insertions in Bacillus subtilis, we identified 35 genes that affect the ability of cells to survive exposure to an inhibitor that arrests replication elongation, but does not cause chemical alteration of the DNA. Genes identified include those involved in iron-sulfur homeostasis, cell envelope biogenesis, and DNA repair and recombination. In B. subtilis, and many bacteria, two nucleases (AddAB and RecJ) are involved in early steps in repairing replication forks arrested by chemical damage to DNA and loss of either nuclease causes increased sensitivity to DNA damaging agents. These nucleases resect DNA ends, leading to assembly of the recombinase RecA onto the single-stranded DNA. Notably, we found that disruption of recJ increased survival of cells following replication arrest, indicating that in the absence of chemical damage to DNA, RecJ is detrimental to survival. In contrast, and as expected, disruption of addA decreased survival of cells following replication arrest, indicating that AddA promotes survival. The different phenotypes of addA and recJ mutants appeared to be due to differences in assembly of RecA onto DNA. RecJ appeared to promote too much assembly of RecA filaments. Our results indicate that in the absence of chemical damage to DNA, RecA is dispensable for cells to survive replication arrest and that the stable RecA nucleofilaments favored by the RecJ pathway may lead to cell death by preventing proper processing of the arrested replication fork.
- Published
- 2022
- Full Text
- View/download PDF
14. Biology and engineering of integrative and conjugative elements: Construction and analyses of hybrid ICEs reveal element functions that affect species-specific efficiencies.
- Author
-
Emily L Bean, Calvin Herman, Mary E Anderson, and Alan D Grossman
- Subjects
Genetics ,QH426-470 - Abstract
Integrative and conjugative elements (ICEs) are mobile genetic elements that reside in a bacterial host chromosome and are prominent drivers of bacterial evolution. They are also powerful tools for genetic analyses and engineering. Transfer of an ICE to a new host involves many steps, including excision from the chromosome, DNA processing and replication, transfer across the envelope of the donor and recipient, processing of the DNA, and eventual integration into the chromosome of the new host (now a stable transconjugant). Interactions between an ICE and its host throughout the life cycle likely influence the efficiencies of acquisition by new hosts. Here, we investigated how different functional modules of two ICEs, Tn916 and ICEBs1, affect the transfer efficiencies into different host bacteria. We constructed hybrid elements that utilize the high-efficiency regulatory and excision modules of ICEBs1 and the conjugation genes of Tn916. These elements produced more transconjugants than Tn916, likely due to an increase in the number of cells expressing element genes and a corresponding increase in excision. We also found that several Tn916 and ICEBs1 components can substitute for one another. Using B. subtilis donors and three Enterococcus species as recipients, we found that different hybrid elements were more readily acquired by some species than others, demonstrating species-specific interactions in steps of the ICE life cycle. This work demonstrates that hybrid elements utilizing the efficient regulatory functions of ICEBs1 can be built to enable efficient transfer into and engineering of a variety of other species.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.