21 results on '"Mondo, S"'
Search Results
2. The gold-standard genome of Aspergillus niger NRRL 3 enables a detailed view of the diversity of sugar catabolism in fungi
- Author
-
Aguilar-Pontes, MV, Brandl, J, McDonnell, E, Strasser, K, Nguyen, TTM, Riley, R, Mondo, S, Salamov, A, Nybo, JL, Vesth, TC, Grigoriev, IV, Andersen, MR, Tsang, A, and de Vries, RP
- Subjects
Microbiology ,Biological Sciences ,Human Genome ,Genetics ,Aspergillus ,Genomic diversity ,Gold standard genome ,Sugar catabolism ,Mycology & Parasitology - Abstract
The fungal kingdom is too large to be discovered exclusively by classical genetics. The access to omics data opens a new opportunity to study the diversity within the fungal kingdom and how adaptation to new environments shapes fungal metabolism. Genomes are the foundation of modern science but their quality is crucial when analysing omics data. In this study, we demonstrate how one gold-standard genome can improve functional prediction across closely related species to be able to identify key enzymes, reactions and pathways with the focus on primary carbon metabolism. Based on this approach we identified alternative genes encoding various steps of the different sugar catabolic pathways, and as such provided leads for functional studies into this topic. We also revealed significant diversity with respect to genome content, although this did not always correlate to the ability of the species to use the corresponding sugar as a carbon source.
- Published
- 2018
3. Coniella lustricola, a new species from submerged detritus
- Author
-
Raudabaugh, DB, Iturriaga, T, Carver, A, Mondo, S, Pangilinan, J, Lipzen, A, He, G, Amirebrahimi, M, Grigoriev, IV, and Miller, AN
- Subjects
Diaporthales ,Schizoparmeaceae ,Sordariomycetes ,Fungal Genome Project ,Mycology & Parasitology ,Microbiology - Abstract
The draft genome, morphological description, and phylogenetic placement of Coniella lustricola sp. nov. (Schizoparmeaceae) are provided. The species was isolated from submerged detritus in a fen at Black Moshannon State Park, Pennsylvania, USA and differs from all other Coniella species by having ellipsoid to fusoid, inequilateral conidia that are rounded on one end and truncate or obtuse on the other end, with a length to width ratio of 2.8. The draft genome is 36.56 Mbp and consists of 870 contigs on 634 scaffolds (L50 = 0.14 Mb, N50 = 76 scaffolds), with 0.5% of the scaffold length in gaps. It contains 11,317 predicted gene models, including predicted genes for cellulose, hemicellulose, and xylan degradation, as well as predicted regions encoding for amylase, laccase, and tannase enzymes. Many members of the Schizoparmeaceae are plant pathogens of agricultural crops. This draft genome represents the first sequenced Coniella genome and will be a valuable tool for comparisons among pathogenic Coniella species.
- Published
- 2018
4. O85 La concentration sanguine d’ADN bactérien prédit la survenue du diabète en population générale
- Author
-
Amar, J., Chabo, C., Lange, C., Serino, M., Iacovoni, J., Mondo, S., Lepage, P., Mariette, J., Lantieri, O., Perez, L., Marre, M., Klopp, P., Courtney, M., Charles, M.A., Balkau, B., and Burcelin, R.
- Published
- 2011
- Full Text
- View/download PDF
5. Comparative genomic analysis of thermophilic fungi reveals convergent evolutionary adaptations and gene losses.
- Author
-
Steindorff AS, Aguilar-Pontes MV, Robinson AJ, Andreopoulos B, LaButti K, Kuo A, Mondo S, Riley R, Otillar R, Haridas S, Lipzen A, Grimwood J, Schmutz J, Clum A, Reid ID, Moisan MC, Butler G, Nguyen TTM, Dewar K, Conant G, Drula E, Henrissat B, Hansel C, Singer S, Hutchinson MI, de Vries RP, Natvig DO, Powell AJ, Tsang A, and Grigoriev IV
- Subjects
- Genomics methods, Phylogeny, Fungi genetics, Fungi classification, Adaptation, Physiological genetics, Fungal Proteins genetics, Fungal Proteins metabolism, Genome, Fungal, Evolution, Molecular
- Abstract
Thermophily is a trait scattered across the fungal tree of life, with its highest prevalence within three fungal families (Chaetomiaceae, Thermoascaceae, and Trichocomaceae), as well as some members of the phylum Mucoromycota. We examined 37 thermophilic and thermotolerant species and 42 mesophilic species for this study and identified thermophily as the ancestral state of all three prominent families of thermophilic fungi. Thermophilic fungal genomes were found to encode various thermostable enzymes, including carbohydrate-active enzymes such as endoxylanases, which are useful for many industrial applications. At the same time, the overall gene counts, especially in gene families responsible for microbial defense such as secondary metabolism, are reduced in thermophiles compared to mesophiles. We also found a reduction in the core genome size of thermophiles in both the Chaetomiaceae family and the Eurotiomycetes class. The Gene Ontology terms lost in thermophilic fungi include primary metabolism, transporters, UV response, and O-methyltransferases. Comparative genomics analysis also revealed higher GC content in the third base of codons (GC3) and a lower effective number of codons in fungal thermophiles than in both thermotolerant and mesophilic fungi. Furthermore, using the Support Vector Machine classifier, we identified several Pfam domains capable of discriminating between genomes of thermophiles and mesophiles with 94% accuracy. Using AlphaFold2 to predict protein structures of endoxylanases (GH10), we built a similarity network based on the structures. We found that the number of disulfide bonds appears important for protein structure, and the network clusters based on protein structures correlate with the optimal activity temperature. Thus, comparative genomics offers new insights into the biology, adaptation, and evolutionary history of thermophilic fungi while providing a parts list for bioengineering applications., (© 2024. Lawrence Berkeley National Laboratory and the Authors.)
- Published
- 2024
- Full Text
- View/download PDF
6. Genomic Analysis of Aspergillus Section Terrei Reveals a High Potential in Secondary Metabolite Production and Plant Biomass Degradation.
- Author
-
Theobald S, Vesth TC, Geib E, Nybo JL, Frisvad JC, Larsen TO, Kuo A, LaButti K, Lyhne EK, Kjærbølling I, Ledsgaard L, Barry K, Clum A, Chen C, Nolan M, Sandor L, Lipzen A, Mondo S, Pangilinan J, Salamov A, Riley R, Wiebenga A, Müller A, Kun RS, Dos Santos Gomes AC, Henrissat B, Magnuson JK, Simmons BA, Mäkelä MR, Mortensen UH, Grigoriev IV, Brock M, Baker SE, de Vries RP, and Andersen MR
- Abstract
Aspergillus terreus has attracted interest due to its application in industrial biotechnology, particularly for the production of itaconic acid and bioactive secondary metabolites. As related species also seem to possess a prosperous secondary metabolism, they are of high interest for genome mining and exploitation. Here, we present draft genome sequences for six species from Aspergillus section Terrei and one species from Aspergillus section Nidulantes . Whole-genome phylogeny confirmed that section Terrei is monophyletic. Genome analyses identified between 70 and 108 key secondary metabolism genes in each of the genomes of section Terrei , the highest rate found in the genus Aspergillus so far. The respective enzymes fall into 167 distinct families with most of them corresponding to potentially unique compounds or compound families. Moreover, 53% of the families were only found in a single species, which supports the suitability of species from section Terrei for further genome mining. Intriguingly, this analysis, combined with heterologous gene expression and metabolite identification, suggested that species from section Terrei use a strategy for UV protection different to other species from the genus Aspergillus . Section Terrei contains a complete plant polysaccharide degrading potential and an even higher cellulolytic potential than other Aspergilli, possibly facilitating additional applications for these species in biotechnology.
- Published
- 2024
- Full Text
- View/download PDF
7. Multilevel analysis between Physcomitrium patens and Mortierellaceae endophytes explores potential long-standing interaction among land plants and fungi.
- Author
-
Mathieu D, Bryson AE, Hamberger B, Singan V, Keymanesh K, Wang M, Barry K, Mondo S, Pangilinan J, Koriabine M, Grigoriev IV, Bonito G, and Hamberger B
- Subjects
- Phylogeny, Endophytes metabolism, Multilevel Analysis, Plant Proteins metabolism, Bryopsida genetics, Bryopsida metabolism, Bryophyta genetics, Bryophyta metabolism, Mycorrhizae metabolism
- Abstract
The model moss species Physcomitrium patens has long been used for studying divergence of land plants spanning from bryophytes to angiosperms. In addition to its phylogenetic relationships, the limited number of differential tissues, and comparable morphology to the earliest embryophytes provide a system to represent basic plant architecture. Based on plant-fungal interactions today, it is hypothesized these kingdoms have a long-standing relationship, predating plant terrestrialization. Mortierellaceae have origins diverging from other land fungi paralleling bryophyte divergence, are related to arbuscular mycorrhizal fungi but are free-living, observed to interact with plants, and can be found in moss microbiomes globally. Due to their parallel origins, we assess here how two Mortierellaceae species, Linnemannia elongata and Benniella erionia, interact with P. patens in coculture. We also assess how Mollicute-related or Burkholderia-related endobacterial symbionts (MRE or BRE) of these fungi impact plant response. Coculture interactions are investigated through high-throughput phenomics, microscopy, RNA-sequencing, differential expression profiling, gene ontology enrichment, and comparisons among 99 other P. patens transcriptomic studies. Here we present new high-throughput approaches for measuring P. patens growth, identify novel expression of over 800 genes that are not expressed on traditional agar media, identify subtle interactions between P. patens and Mortierellaceae, and observe changes to plant-fungal interactions dependent on whether MRE or BRE are present. Our study provides insights into how plants and fungal partners may have interacted based on their communications observed today as well as identifying L. elongata and B. erionia as modern fungal endophytes with P. patens., (© 2024 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
8. Genome-scale phylogeny and comparative genomics of the fungal order Sordariales.
- Author
-
Hensen N, Bonometti L, Westerberg I, Brännström IO, Guillou S, Cros-Aarteil S, Calhoun S, Haridas S, Kuo A, Mondo S, Pangilinan J, Riley R, LaButti K, Andreopoulos B, Lipzen A, Chen C, Yan M, Daum C, Ng V, Clum A, Steindorff A, Ohm RA, Martin F, Silar P, Natvig DO, Lalanne C, Gautier V, Ament-Velásquez SL, Kruys Å, Hutchinson MI, Powell AJ, Barry K, Miller AN, Grigoriev IV, Debuchy R, Gladieux P, Hiltunen Thorén M, and Johannesson H
- Subjects
- Humans, Phylogeny, Genome, Base Sequence, Evolution, Molecular, Genomics methods, Sordariales genetics
- Abstract
The order Sordariales is taxonomically diverse, and harbours many species with different lifestyles and large economic importance. Despite its importance, a robust genome-scale phylogeny, and associated comparative genomic analysis of the order is lacking. In this study, we examined whole-genome data from 99 Sordariales, including 52 newly sequenced genomes, and seven outgroup taxa. We inferred a comprehensive phylogeny that resolved several contentious relationships amongst families in the order, and cleared-up intrafamily relationships within the Podosporaceae. Extensive comparative genomics showed that genomes from the three largest families in the dataset (Chaetomiaceae, Podosporaceae and Sordariaceae) differ greatly in GC content, genome size, gene number, repeat percentage, evolutionary rate, and genome content affected by repeat-induced point mutations (RIP). All genomic traits showed phylogenetic signal, and ancestral state reconstruction revealed that the variation of the properties stems primarily from within-family evolution. Together, the results provide a thorough framework for understanding genome evolution in this important group of fungi., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
9. Convergent reductive evolution and host adaptation in Mycoavidus bacterial endosymbionts of Mortierellaceae fungi.
- Author
-
Amses K, Desiró A, Bryson A, Grigoriev I, Mondo S, Lipzen A, LaButti K, Riley R, Singan V, Salazar-Hamm P, King J, Ballou E, Pawlowska T, Adeleke R, Bonito G, and Uehling J
- Subjects
- Phylogeny, Fungi genetics, Bacteria, Symbiosis genetics, Host Adaptation, Burkholderiaceae genetics
- Abstract
Intimate associations between fungi and intracellular bacterial endosymbionts are becoming increasingly well understood. Phylogenetic analyses demonstrate that bacterial endosymbionts of Mucoromycota fungi are related either to free-living Burkholderia or Mollicutes species. The so-called Burkholderia-related endosymbionts or BRE comprise Mycoavidus, Mycetohabitans and Candidatus Glomeribacter gigasporarum. These endosymbionts are marked by genome contraction thought to be associated with intracellular selection. However, the conclusions drawn thus far are based on a very small subset of endosymbiont genomes, and the mechanisms leading to genome streamlining are not well understood. The purpose of this study was to better understand how intracellular existence shapes Mycoavidus and BRE functionally at the genome level. To this end we generated and analyzed 14 novel draft genomes for Mycoavidus living within the hyphae of Mortierellomycotina fungi. We found that our novel Mycoavidus genomes were significantly reduced compared to free-living Burkholderiales relatives. Using a genome-scale phylogenetic approach including the novel and available existing genomes of Mycoavidus, we show that the genus is an assemblage composed of two independently derived lineages including three well supported clades of Mycoavidus. Using a comparative genomic approach, we shed light on the functional implications of genome reduction, documenting shared and unique gene loss patterns between the three Mycoavidus clades. We found that many endosymbiont isolates demonstrate patterns of vertical transmission and host-specificity, but others are present in phylogenetically disparate hosts. We discuss how reductive evolution and host specificity reflect convergent adaptation to the intrahyphal selective landscape, and commonalities of eukaryotic endosymbiont genome evolution., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
10. Rapid recurrence of stage IIB non-gestational ovarian choriocarcinoma with minor yolk sac tumor: A rare case report and literature review.
- Author
-
Maybury EK, Gwacham NI, Singh C, Mondo S, Ahmad S, and McKenzie ND
- Abstract
Non-gestational ovarian choriocarcinoma (NGOC) is a rare phenomenon seldom reported in the literature. Patients often present with abdominopelvic pain, and sometimes a palpable adnexal mass. Surgical excision is paramount in treating this malignancy; however, fertility-preserving care is a debated topic among gynecologic oncologists. Most patients reported in the literature are nulliparous women of child-bearing age. It is important to consider fertility preservation whilst balancing oncologic outcomes. We present a case of an 18-year-old nulliparous female with stage IIB NGOC that had disease progression in the lungs and pelvis shortly after undergoing fertility-preserving surgery. She required emergent completion surgery and received etoposide (E), methotrexate (M), actinomycin-D (A), cyclophosphamide (C) and vincristine (O) (EMA-CO) with complete response. She remains disease-free after 21-months., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
11. Mycoparasites, Gut Dwellers, and Saprotrophs: Phylogenomic Reconstructions and Comparative Analyses of Kickxellomycotina Fungi.
- Author
-
Reynolds NK, Stajich JE, Benny GL, Barry K, Mondo S, LaButti K, Lipzen A, Daum C, Grigoriev IV, Ho HM, Crous PW, Spatafora JW, and Smith ME
- Subjects
- Humans, Animals, Phylogeny, Base Sequence, Genome, Fungi genetics, Arthropods genetics
- Abstract
Improved sequencing technologies have profoundly altered global views of fungal diversity and evolution. High-throughput sequencing methods are critical for studying fungi due to the cryptic, symbiotic nature of many species, particularly those that are difficult to culture. However, the low coverage genome sequencing (LCGS) approach to phylogenomic inference has not been widely applied to fungi. Here we analyzed 171 Kickxellomycotina fungi using LCGS methods to obtain hundreds of marker genes for robust phylogenomic reconstruction. Additionally, we mined our LCGS data for a set of nine rDNA and protein coding genes to enable analyses across species for which no LCGS data were obtained. The main goals of this study were to: 1) evaluate the quality and utility of LCGS data for both phylogenetic reconstruction and functional annotation, 2) test relationships among clades of Kickxellomycotina, and 3) perform comparative functional analyses between clades to gain insight into putative trophic modes. In opposition to previous studies, our nine-gene analyses support two clades of arthropod gut dwelling species and suggest a possible single evolutionary event leading to this symbiotic lifestyle. Furthermore, we resolve the mycoparasitic Dimargaritales as the earliest diverging clade in the subphylum and find four major clades of Coemansia species. Finally, functional analyses illustrate clear variation in predicted carbohydrate active enzymes and secondary metabolites (SM) based on ecology, that is biotroph versus saprotroph. Saprotrophic Kickxellales broadly lack many known pectinase families compared with saprotrophic Mucoromycota and are depauperate for SM but have similar numbers of predicted chitinases as mycoparasitic., (© The Author(s) 2023. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.)
- Published
- 2023
- Full Text
- View/download PDF
12. Evolution of zygomycete secretomes and the origins of terrestrial fungal ecologies.
- Author
-
Chang Y, Wang Y, Mondo S, Ahrendt S, Andreopoulos W, Barry K, Beard J, Benny GL, Blankenship S, Bonito G, Cuomo C, Desiro A, Gervers KA, Hundley H, Kuo A, LaButti K, Lang BF, Lipzen A, O'Donnell K, Pangilinan J, Reynolds N, Sandor L, Smith ME, Tsang A, Grigoriev IV, Stajich JE, and Spatafora JW
- Abstract
Fungi survive in diverse ecological niches by secreting proteins and other molecules into the environment to acquire food and interact with various biotic and abiotic stressors. Fungal secretome content is, therefore, believed to be tightly linked to fungal ecologies. We sampled 132 genomes from the early-diverging terrestrial fungal lineage zygomycetes (Mucoromycota and Zoopagomycota) and characterized their secretome composition. Our analyses revealed that phylogeny played an important role in shaping the secretome composition of zygomycete fungi with trophic mode contributing a smaller amount. Reconstruction of the evolution of secreted digestive enzymes revealed lineage-specific expansions, indicating that Mucoromycota and Zoopagomycota followed different trajectories early in their evolutionary history. We identified the presence of multiple pathogenicity-related proteins in the lineages known as saprotrophs, suggesting that either the ecologies of these fungi are incompletely known, and/or that these pathogenicity-related proteins have important functions associated with saprotrophic ecologies, both of which invite further investigation., Competing Interests: The authors declare no conflict of interest., (© 2022 The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
13. The Melampsora americana Population on Salix purpurea in the Great Lakes Region Is Highly Diverse with a Contributory Influence of Clonality.
- Author
-
Crowell CR, Wilkerson DG, Beckauri M, Cala AR, McMullen PW, Mondo S, Andreopoulos W, Lipzen A, Lail K, Yan M, Ng V, Grigoriev IV, Smart LB, and Smart CD
- Subjects
- Plant Breeding, Plant Diseases genetics, Basidiomycota genetics, Salix genetics
- Abstract
Shrub willows ( Salix spp.) are emerging as a viable lignocellulosic, second-generation bioenergy crop with many growth characteristics favorable for marginal lands in New York State and surrounding areas. Willow rust, caused by members of the genus Melampsora , is the most limiting disease of shrub willow in this region and remains extremely understudied. In this study, genetic diversity, genetic structure, and pathogen clonality were examined in Melampsora americana over two growing seasons via genotyping-by-sequencing to identify single-nucleotide polymorphism markers. In conjunction with this project, a reference genome of rust isolate R15-033-03 was generated to aid in variant discovery. Sampling between years allowed regional and site-specific investigation into population dynamics, in the context of both wild and cultivated hosts within high-density plantings. This work revealed that this pathogen is largely panmictic over the sampled areas, with few sites showing moderate genetic differentiation. These data support the hypothesis of sexual recombination between growing seasons because no genotype persisted across the two years of sampling. Additionally, clonality was determined as a driver of pathogen populations within cultivated fields and single shrubs; however, there is also evidence of high genetic diversity of rust isolates in all settings. This work provides a framework for M. americana population structure in the Great Lakes region, providing crucial information that can aid in future resistance breeding efforts.
- Published
- 2022
- Full Text
- View/download PDF
14. Genome Sequence and Analysis of the Flavinogenic Yeast Candida membranifaciens IST 626.
- Author
-
Palma M, Mondo S, Pereira M, Vieira É, Grigoriev IV, and Sá-Correia I
- Abstract
The ascomycetous yeast Candida membranifaciens has been isolated from diverse habitats, including humans, insects, and environmental sources, exhibiting a remarkable ability to use different carbon sources that include pentoses, melibiose, and inulin. In this study, we isolated four C. membranifaciens strains from soil and investigated their potential to overproduce riboflavin. C. membranifaciens IST 626 was found to produce the highest concentrations of riboflavin. The volumetric production of this vitamin was higher when C. membranifaciens IST 626 cells were cultured in a commercial medium without iron and when xylose was the available carbon source compared to the same basal medium with glucose. Supplementation of the growth medium with 2 g/L glycine favored the metabolization of xylose, leading to biomass increase and consequent enhancement of riboflavin volumetric production that reached 120 mg/L after 216 h of cultivation. To gain new insights into the molecular basis of riboflavin production and carbon source utilization in this species, the first annotated genome sequence of C. membranifaciens is reported in this article, as well as the result of a comparative genomic analysis with other relevant yeast species. A total of 5619 genes were predicted to be present in C. membranifaciens IST 626 genome sequence (11.5 Mbp). Among them are genes involved in riboflavin biosynthesis, iron homeostasis, and sugar uptake and metabolism. This work put forward C. membranifaciens IST 626 as a riboflavin overproducer and provides valuable molecular data for future development of superior producing strains capable of using the wide range of carbon sources, which is a characteristic trait of the species.
- Published
- 2022
- Full Text
- View/download PDF
15. A large accessory genome and high recombination rates may influence global distribution and broad host range of the fungal plant pathogen Claviceps purpurea.
- Author
-
Wyka S, Mondo S, Liu M, Nalam V, and Broders K
- Subjects
- DNA Transposable Elements, Host Specificity, Polymorphism, Single Nucleotide, Selection, Genetic, Claviceps genetics, Genome, Fungal, Recombination, Genetic
- Abstract
Pangenome analyses are increasingly being utilized to study the evolution of eukaryotic organisms. While pangenomes can provide insight into polymorphic gene content, inferences about the ecological and adaptive potential of such organisms also need to be accompanied by additional supportive genomic analyses. In this study we constructed a pangenome of Claviceps purpurea from 24 genomes and examined the positive selection and recombination landscape of an economically important fungal organism for pharmacology and agricultural research. Together, these analyses revealed that C. purpurea has a relatively large accessory genome (~ 38%), high recombination rates (ρ = 0.044), and transposon mediated gene duplication. However, due to observations of relatively low transposable element (TE) content (8.8%) and a lack of variability in genome sizes, prolific TE expansion may be controlled by frequent recombination. We additionally identified that within the ergoline biosynthetic cluster the lpsA1 and lpsA2 were the result of a recombination event. However, the high recombination rates observed in C. purpurea may be influencing an overall trend of purifying selection across the genome. These results showcase the use of selection and recombination landscapes to identify mechanisms contributing to pangenome structure and primary factors influencing the evolution of an organism., Competing Interests: The authors have declared that no competing interests exist. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. The U.S. Department of Agriculture prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.
- Published
- 2022
- Full Text
- View/download PDF
16. Phylogenomic Analyses of Non-Dikarya Fungi Supports Horizontal Gene Transfer Driving Diversification of Secondary Metabolism in the Amphibian Gastrointestinal Symbiont, Basidiobolus .
- Author
-
Tabima JF, Trautman IA, Chang Y, Wang Y, Mondo S, Kuo A, Salamov A, Grigoriev IV, Stajich JE, and Spatafora JW
- Subjects
- Amphibians, Animals, Fungi, Phylogeny, Secondary Metabolism, Entomophthorales, Gene Transfer, Horizontal
- Abstract
Research into secondary metabolism (SM) production by fungi has resulted in the discovery of diverse, biologically active compounds with significant medicinal applications. The fungi rich in SM production are taxonomically concentrated in the subkingdom Dikarya, which comprises the phyla Ascomycota and Basidiomycota. Here, we explore the potential for SM production in Mucoromycota and Zoopagomycota, two phyla of nonflagellated fungi that are not members of Dikarya, by predicting and identifying core genes and gene clusters involved in SM. The majority of non-Dikarya have few genes and gene clusters involved in SM production except for the amphibian gut symbionts in the genus Basidiobolus Basidiobolus genomes exhibit an enrichment of SM genes involved in siderophore, surfactin-like, and terpene cyclase production, all these with evidence of constitutive gene expression. Gene expression and chemical assays also confirm that Basidiobolus has significant siderophore activity. The expansion of SMs in Basidiobolus are partially due to horizontal gene transfer from bacteria, likely as a consequence of its ecology as an amphibian gut endosymbiont., (Copyright © 2020 Tabima et al.)
- Published
- 2020
- Full Text
- View/download PDF
17. A comparative genomics study of 23 Aspergillus species from section Flavi.
- Author
-
Kjærbølling I, Vesth T, Frisvad JC, Nybo JL, Theobald S, Kildgaard S, Petersen TI, Kuo A, Sato A, Lyhne EK, Kogle ME, Wiebenga A, Kun RS, Lubbers RJM, Mäkelä MR, Barry K, Chovatia M, Clum A, Daum C, Haridas S, He G, LaButti K, Lipzen A, Mondo S, Pangilinan J, Riley R, Salamov A, Simmons BA, Magnuson JK, Henrissat B, Mortensen UH, Larsen TO, de Vries RP, Grigoriev IV, Machida M, Baker SE, and Andersen MR
- Subjects
- Aspergillus flavus classification, Aspergillus flavus enzymology, Aspergillus oryzae classification, Aspergillus oryzae enzymology, Bioreactors, Carbohydrate Metabolism genetics, Crops, Agricultural microbiology, DNA, Fungal genetics, Fermentation, Fermented Foods, Fungal Proteins genetics, Fungal Proteins metabolism, Metabolic Networks and Pathways genetics, Multigene Family, Phenotype, Phylogeny, Plant Diseases prevention & control, Secondary Metabolism genetics, Aspergillus flavus genetics, Aspergillus oryzae genetics, Genome, Fungal genetics, Genomics
- Abstract
Section Flavi encompasses both harmful and beneficial Aspergillus species, such as Aspergillus oryzae, used in food fermentation and enzyme production, and Aspergillus flavus, food spoiler and mycotoxin producer. Here, we sequence 19 genomes spanning section Flavi and compare 31 fungal genomes including 23 Flavi species. We reassess their phylogenetic relationships and show that the closest relative of A. oryzae is not A. flavus, but A. minisclerotigenes or A. aflatoxiformans and identify high genome diversity, especially in sub-telomeric regions. We predict abundant CAZymes (598 per species) and prolific secondary metabolite gene clusters (73 per species) in section Flavi. However, the observed phenotypes (growth characteristics, polysaccharide degradation) do not necessarily correlate with inferences made from the predicted CAZyme content. Our work, including genomic analyses, phenotypic assays, and identification of secondary metabolites, highlights the genetic and metabolic diversity within section Flavi.
- Published
- 2020
- Full Text
- View/download PDF
18. 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens.
- Author
-
Haridas S, Albert R, Binder M, Bloem J, LaButti K, Salamov A, Andreopoulos B, Baker SE, Barry K, Bills G, Bluhm BH, Cannon C, Castanera R, Culley DE, Daum C, Ezra D, González JB, Henrissat B, Kuo A, Liang C, Lipzen A, Lutzoni F, Magnuson J, Mondo SJ, Nolan M, Ohm RA, Pangilinan J, Park HJ, Ramírez L, Alfaro M, Sun H, Tritt A, Yoshinaga Y, Zwiers LH, Turgeon BG, Goodwin SB, Spatafora JW, Crous PW, and Grigoriev IV
- Abstract
Dothideomycetes is the largest class of kingdom Fungi and comprises an incredible diversity of lifestyles, many of which have evolved multiple times. Plant pathogens represent a major ecological niche of the class Dothideomycetes and they are known to infect most major food crops and feedstocks for biomass and biofuel production. Studying the ecology and evolution of Dothideomycetes has significant implications for our fundamental understanding of fungal evolution, their adaptation to stress and host specificity, and practical implications with regard to the effects of climate change and on the food, feed, and livestock elements of the agro-economy. In this study, we present the first large-scale, whole-genome comparison of 101 Dothideomycetes introducing 55 newly sequenced species. The availability of whole-genome data produced a high-confidence phylogeny leading to reclassification of 25 organisms, provided a clearer picture of the relationships among the various families, and indicated that pathogenicity evolved multiple times within this class. We also identified gene family expansions and contractions across the Dothideomycetes phylogeny linked to ecological niches providing insights into genome evolution and adaptation across this group. Using machine-learning methods we classified fungi into lifestyle classes with >95 % accuracy and identified a small number of gene families that positively correlated with these distinctions. This can become a valuable tool for genome-based prediction of species lifestyle, especially for rarely seen and poorly studied species., (© 2020 Westerdijk Fungal Biodiversity Institute. Production and hosting by ELSEVIER B.V.)
- Published
- 2020
- Full Text
- View/download PDF
19. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi.
- Author
-
Krizsán K, Almási É, Merényi Z, Sahu N, Virágh M, Kószó T, Mondo S, Kiss B, Bálint B, Kües U, Barry K, Cseklye J, Hegedüs B, Henrissat B, Johnson J, Lipzen A, Ohm RA, Nagy I, Pangilinan J, Yan J, Xiong Y, Grigoriev IV, Hibbett DS, and Nagy LG
- Subjects
- Gene Expression Regulation, Fungal physiology, Agaricales genetics, Agaricales growth & development, Databases, Nucleic Acid, Fruiting Bodies, Fungal genetics, Fruiting Bodies, Fungal growth & development, Fungal Proteins biosynthesis, Fungal Proteins genetics, Genes, Fungal, Transcriptome physiology
- Abstract
The evolution of complex multicellularity has been one of the major transitions in the history of life. In contrast to simple multicellular aggregates of cells, it has evolved only in a handful of lineages, including animals, embryophytes, red and brown algae, and fungi. Despite being a key step toward the evolution of complex organisms, the evolutionary origins and the genetic underpinnings of complex multicellularity are incompletely known. The development of fungal fruiting bodies from a hyphal thallus represents a transition from simple to complex multicellularity that is inducible under laboratory conditions. We constructed a reference atlas of mushroom formation based on developmental transcriptome data of six species and comparisons of >200 whole genomes, to elucidate the core genetic program of complex multicellularity and fruiting body development in mushroom-forming fungi (Agaricomycetes). Nearly 300 conserved gene families and >70 functional groups contained developmentally regulated genes from five to six species, covering functions related to fungal cell wall remodeling, targeted protein degradation, signal transduction, adhesion, and small secreted proteins (including effector-like orphan genes). Several of these families, including F-box proteins, expansin-like proteins, protein kinases, and transcription factors, showed expansions in Agaricomycetes, many of which convergently expanded in multicellular plants and/or animals too, reflecting convergent solutions to genetic hurdles imposed by complex multicellularity among independently evolved lineages. This study provides an entry point to studying mushroom development and complex multicellularity in one of the largest clades of complex eukaryotic organisms., Competing Interests: The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
20. Phylogenetic and Phylogenomic Definition of Rhizopus Species.
- Author
-
Gryganskyi AP, Golan J, Dolatabadi S, Mondo S, Robb S, Idnurm A, Muszewska A, Steczkiewicz K, Masonjones S, Liao HL, Gajdeczka MT, Anike F, Vuek A, Anishchenko IM, Voigt K, de Hoog GS, Smith ME, Heitman J, Vilgalys R, and Stajich JE
- Subjects
- DNA Transposable Elements genetics, Genes, Mating Type, Fungal, Genome Size, Genome, Fungal, Likelihood Functions, Open Reading Frames genetics, Species Specificity, Whole Genome Sequencing, Genomics, Phylogeny, Rhizopus classification, Rhizopus genetics
- Abstract
Phylogenomic approaches have the potential to improve confidence about the inter-relationships of species in the order Mucorales within the fungal tree of life. Rhizopus species are especially important as plant and animal pathogens and bioindustrial fermenters for food and metabolite production. A dataset of 192 orthologous genes was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four species isolated from habitats of industrial, medical and environmental importance. The phylogeny indicates that the genus Rhizopus consists of three major clades, with R. microsporus as the basal species and the sister lineage to R. stolonifer and two closely related species R. arrhizus and R. delemar A comparative analysis of the mating type locus across Rhizopus reveals that its structure is flexible even between different species in the same genus, but shows similarities between Rhizopus and other mucoralean fungi. The topology of single-gene phylogenies built for two genes involved in mating is similar to the phylogenomic tree. Comparison of the total length of the genome assemblies showed that genome size varies by as much as threefold within a species and is driven by changes in transposable element copy numbers and genome duplications., (Copyright © 2018 Gryganskyi et al.)
- Published
- 2018
- Full Text
- View/download PDF
21. Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species.
- Author
-
Kjærbølling I, Vesth TC, Frisvad JC, Nybo JL, Theobald S, Kuo A, Bowyer P, Matsuda Y, Mondo S, Lyhne EK, Kogle ME, Clum A, Lipzen A, Salamov A, Ngan CY, Daum C, Chiniquy J, Barry K, LaButti K, Haridas S, Simmons BA, Magnuson JK, Mortensen UH, Larsen TO, Grigoriev IV, Baker SE, and Andersen MR
- Subjects
- Aflatoxins biosynthesis, Allergens genetics, Aspergillus pathogenicity, DNA Methylation, Evolution, Molecular, Flavonoids biosynthesis, Genome, Fungal, Indole Alkaloids metabolism, Phylogeny, Terpenes metabolism, Whole Genome Sequencing, Aflatoxins genetics, Aspergillus genetics, Aspergillus metabolism, Multigene Family, Secondary Metabolism genetics
- Abstract
The fungal genus of Aspergillus is highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverse Aspergillus species ( A. campestris , A. novofumigatus , A. ochraceoroseus , and A. steynii ) have been whole-genome PacBio sequenced to provide genetic references in three Aspergillus sections. A. taichungensis and A. candidus also were sequenced for SM elucidation. Thirteen Aspergillus genomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular, A. novofumigatus was compared with the pathogenic species A. fumigatus This suggests that A. novofumigatus can produce most of the same allergens, virulence, and pathogenicity factors as A. fumigatus , suggesting that A. novofumigatus could be as pathogenic as A. fumigatus Furthermore, SMs were linked to gene clusters based on biological and chemical knowledge and analysis, genome sequences, and predictive algorithms. We thus identify putative SM clusters for aflatoxin, chlorflavonin, and ochrindol in A. ochraceoroseus , A. campestris , and A. steynii , respectively, and novofumigatonin, ent -cycloechinulin, and epi -aszonalenins in A. novofumigatus Our study delivers six fungal genomes, showing the large diversity found in the Aspergillus genus; highlights the potential for discovery of beneficial or harmful SMs; and supports reports of A. novofumigatus pathogenicity. It also shows how biological, biochemical, and genomic information can be combined to identify genes involved in the biosynthesis of specific SMs., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.