1. Osteogenesis and angiogenesis of a bulk metallic glass for biomedical implants
- Author
-
K. Sun, R. Fu, X.W. Liu, L.M. Xu, G. Wang, S.Y. Chen, Q.J. Zhai, and S. Pauly
- Subjects
Metallic glasses ,Bio-corrosion ,Biocompatibility ,Osteogenesis ,Angiogenesis ,Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Biology (General) ,QH301-705.5 - Abstract
Implantation is an essential issue in orthopedic surgery. Bulk metallic glasses (BMGs), as a kind of novel materials, attract lots of attentions in biological field owing to their comprehensive excellent properties. Here, we show that a Zr61Ti2Cu25Al12 (at. %) BMG (Zr-based BMG) displays the best cytocompatibility, pronounced positive effects on cellular migration, and tube formation from in-vitro tests as compared to those of commercial-pure titanium and poly-ether-ether-ketone. The in-vivo micro-CT and histological evaluation demonstrate the Zr-based BMG can significantly promote a bone formation. Immunofluorescence tests and digital reconstructed radiographs manifest a stimulated effect on early blood vessel formation from the Zr-based BMG. Accordingly, the intimate connection and coupling effect between angiogenesis and osteogenesis must be effective during bone regeneration after implanting Zr-based BMG. Dynamic gait analysis in rats after implanting Zr-based BMG demonstrates a tendency to decrease the pain level during recovery, simultaneously, without abnormal ionic accumulation and inflammatory reactions. Considering suitable mechanical properties, we provide a realistic candidate of the Zr61Ti2Cu25Al12 BMG for biomedical applications.
- Published
- 2022
- Full Text
- View/download PDF