1. Anti-CRISPR Anopheles mosquitoes inhibit gene drive spread under challenging behavioural conditions in large cages.
- Author
-
D'Amato R, Taxiarchi C, Galardini M, Trusso A, Minuz RL, Grilli S, Somerville AGT, Shittu D, Khalil AS, Galizi R, Crisanti A, Simoni A, and Müller R
- Subjects
- Animals, Mosquito Vectors genetics, Mosquito Control, Anopheles genetics, Gene Drive Technology, Malaria
- Abstract
CRISPR-based gene drives have the potential to spread within populations and are considered as promising vector control tools. A doublesex-targeting gene drive was able to suppress laboratory Anopheles mosquito populations in small and large cages, and it is considered for field application. Challenges related to the field-use of gene drives and the evolving regulatory framework suggest that systems able to modulate or revert the action of gene drives, could be part of post-release risk-mitigation plans. In this study, we challenge an AcrIIA4-based anti-drive to inhibit gene drive spread in age-structured Anopheles gambiae population under complex feeding and behavioural conditions. A stochastic model predicts the experimentally-observed genotype dynamics in age-structured populations in medium-sized cages and highlights the necessity of large-sized cage trials. These experiments and experimental-modelling framework demonstrate the effectiveness of the anti-drive in different scenarios, providing further corroboration for its use in controlling the spread of gene drive in Anopheles., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF